SSIM Concept for IMRT QA Evaluation

Chengyu Shi, Ph.D.

Back to the past (1984)-AAPM Report No. 13

CHAPTER 1 INTRODUCTION

Quality assurance in radiation therapy includes those procedures that ensure a consistent and safe fulfillment of the dose prescription to the target volume, with minimal dose to normal tissues and minimal exposure to personnel.

A comprehensive quality assurance program is necessary because of the importance of accuracy in dose delivery in radiation therapy. The dare-response curve in radiation therapy is quite steep in certain cases, and there is evidence that a 7-10% change in the dose to the target volume may result in a significant change in tuner control probability [53]. Similarly, such a dose change may also result in a sharp change in the incidence and severity of radiation induced morbidity.

Surveying the evidence on effective and excessive dose levels, Herring and Compton [38] concluded that the therapeutic system should be capable of delivering a dose to the tumor volume within 5% of the dose prescribed. Report 24 from the International Commission on Radiation Units and Measurements [53] lists several studier in support of this conclusion.

43

 \leq

Overall uncertainty in dose at a poin				
step	(2-σ) uncertainty (%)			
dosimeter calibration	1.6			
daily calibration	2.0			
methods and parameters	3.0			

2.0 2.0

2.0

2.0 5.6

effective depth

SSD

wedges block trays

cumulative

Step	(2-σ) uncertainty (mm)
Laser localization	2.0/1.5/1.0
ODI @ iso	2.0
Collimator size indicator	2.0/1.0
effective depth	2.0
Light/radiation field	2.0/1.0
Cross-hair centering	1.0
Couch position	2.0
Wedge placement	2.0
Compensator placement	1.0
Cumulative	5.0

Summary about QA tolerance

- > Dose has uncertainties
- Distance has uncertainties
- Patient specific quality assurance (PSQA) will be affected by both dose and distance
- > History data may or may not still be valid now

➢ How should we do PSQA?

PSQA-Quantitative ways

> DD or DTA or overlaid plot

- Designed during 3D CRT era
- Only consider one aspect (dose or distance)
- Depending on human eyes
- Link to PTV or OAR is weak
- 1D or 2D QA

PSQA-Statistical ways

Gamma Index issues

- mma Index issues **Passing gamma dese not mean the plan is acceptable** (Kruse JJ. On the insensitivity of single field planar dosimetry to IMRT inaccuracies. Med Phys. 37(6), 2010.)
 No correlation with patient DVH (Stasi M, Bresciani S, Miranti A, *et al.* Pretreatment patient-specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram. Med Phys. 39(2), 2012.)
 Cannot detect systematic proces (Nems BE Chan ME, Jarry G, *et al.*
- histogram. Med Phys. 39(2), 2012.) Cannot detect systematic errors (Nelms BE, Chan MF, Jarry G, *et al.* Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels. Med Phys. 40(11), 2013.) No link with biomathematical treatment outcome models (Garcia-Romero A, Hernandez-Vitoria A, Millan-Cebrian E, *et al.* On the new metrics for IMRT OA verification. Med Phy. 43(11), 2016.) Cannot distinguish equipment differences Do not distinguish shapes (PTV, OARs) May not be suitable real time monitoring

- .
- .

PSQA-Topological ways					
≻ SSIM					
600	IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004				
Image Quality As	ssessment: From Error Visibility to				
S	tructural Similarity				
Zhou Wang, Member, IEEE, Alan Cor E	arad Bovik, Fellow, IEEE, Hamid Rahim Sheikh, Student Member, IEEE, and ero P. Simoncelli, Senior Member, IEEE				
SSIM(x, y) =					
$f\left(l(x, y)^{\alpha}, c(x, y)\right) = \frac{2u_{x}u_{y}+c_{1}}{u_{x}^{2}+u_{y}^{2}+c_{1}} c_{1} = 0$	$(y)^{\beta}, s(x, y)^{\gamma}$				
$c(x,y) = \frac{2\delta_x \delta_y + C_2}{\delta_x^2 + \delta_y^2 + C_2} C_2 = ($	$(K_2L)^2, K_2 << 1$				
$s(x,y) = \frac{\delta_{xy} + C_3}{\delta_x \delta_y + C_3} C_3 = \frac{C_2}{C_3}$	/2				
α=β=γ=1, <i>K</i> 1=0.01, <i>K</i> 2=0.0	o3, L=255				

Plan Lung1	Field							
Lung1	01	Field 02	Field 03	Field 04	Field 05	Field 06	Field 07	Dophin SSIM
Lung2	0.9976	0.9947	0.9938	0.9926	0.9922			
COULDE .	0.9997	0.9999	0.9984	0.997	0.9978	0.9999	0.9971	
Brain1	0.9999	0.9998	0.9999	0.9994	0.9995	0.9991		
Brain2	1.0000	0.9999	1.0000	1.0000	1.0000	1.0000		
GI	0.9973	0.9997	0.9985	0.9988	0.9997	0.9991	0.9987	
Dian	Field	Field	Field	Field	Field	Field	Field	Manahask SSIM
Plan	01	02	03	04	05	06	07	Wapcheck SSIW
Lung1	0.9884	0.9854	0.9859	0.9831	0.9787			
Lung2	0.9983	0.9984	0.9951	0.9942	0.996	0.999	0.9935	
Brain1	0.9995	0.9993	0.9995	0.9987	0.9988	0.9976		
Brain2	0.9999	0.9995	0.9998	0.9998	0.9998	0.9998		
GI	0.9909	0.9978	0.9969	0.9979	0.9987	0.9979	0.9975	
Plan	Field	Field	Field	Field	Field	Field	Field	EPID SSIM
Lung1	01	02	03	04	05	06	07	
Lung2	1.000	1.000	1.000	1.000	1.000			
Brain1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Brain2	1.000	1.000	1.000	1.000	1.000	1.000		
GI	1.000	1.000	1.000	1.000	1.000	1.000		

Discussion

Based on the data analysis, we found that EPID>Dophin>MapCHECK

>SSIM will only show the differences, but we do not have a tolerance for pass/fail yet

>Further investigation is needed to set up the tolerance.

Or we may not need a tolerance? Deriving a "bottom reference" SSIM based on DVH and anything above it is acceptable?

Summary

We have reviewed QA, PSQA methods and SSIM concept

➤We have analyzed the factors affecting SSIM

>We have preliminary results using SSIM for RT

