

Material Quantification: Three Unknowns

- Three material decomposition
- $\begin{cases} \mu_L = G_L(\rho_1,\rho_2,\rho_3) \\ \mu_H = G_H(\rho_1,\rho_2,\rho_3) \end{cases}$
- Underdetermined problem
 - Additional information (assumptions) required.
- ρ = ρ₁ + ρ₂ + ρ₃
 Exact, but difficult to solve the problem.
- Volume conservation

Mass conservation

• $1 = f_1 + f_2 + f_3$ (volume fraction)

Approximate, but very easy to solve.

Dedicated DECT Scanners

Key requirements

- Minimize the time interval between two acquisitions
 - Ideally two acquisitions simultaneously
- Maximize spectral separation difference between two energies
- Improve CNR

4

Clinical Applications

Synthetic dual-energy CT images

- Virtual monoenergetic images
- Material specific / removed images for quantification and differentiation: lodine map, Virtual noncontrast images, dualenergy ratio/slope
- Z and $\rho \left(\rho_{\rm e} \right)$ maps

Virtual Monoenergetic (monochromatic) Images

- $\mu(E_m) = \rho_1 \left(\frac{\mu}{\rho}\right)_1 (E_m) + \rho_2 \left(\frac{\mu}{\rho}\right)_2 (E_m)$, $E_m = 40, ..., 190$ (200) keV, every 1 keV.
 - Note: virtual mono-E does not direct connection with acquisition spectra.

Applications

16

- Middle energy level (~ 70 keV): less beam hardening artifacts, consistent CT number; conventional image replacement.
- Low energy level(40-60 keV): Boost contrast (iodine contrast)
- Higher energy level (>120 keV): reduce metal artifacts

