Introduction to Simulated Error Training

University of Colorado Anschutz Medical Campus

ado Leah Schubert, Ph.D. Campus Conflict of Interest Disclosure

Objectives

- Define the concept and rationale of simulated error training
- Describe the educational techniques on which simulated error training is based
- Understand how simulated error training can be used as a tool to develop, assess, and improve your method for performing physics plan reviews

Why Simulated Error Training? Physics plan reviews, needles in a haystack Complexities in the planning process Errors, potential to cause mistreatment, documentation compliance How do we know we can catch these errors?

Motivation for Simulated Error Training

- WGPE developing as practical tool for the physics community
- Follow up project to TG-275
- New recommendations for physics plan reviews (TG-275, MPPG #11)
- TG-275 identified high priority failure modes for the plan review process
- Simulated error training uses errors from TG-275 tables

Interest in Simulated Error Training

- Survey of Program Directors of CAMPEP-accredited therapy physics residency programs
- Determine the current state of residency training in physics plan reviews
- Most common training methods in use
 - Observe staff physicists performing plan reviews (96%)
 - Perform supervised plan reviews (93%) (either for training or clinical practice)
 - Use a checklist (80%)

Interest in Simulated Error Training
 Simulation plans with embedded errors to train residents

 Currently using: 19%
 Would use: 71%

 Largest difference out of all of the training methods presented
 High interest for residency programs

Challenges to Implementation

Resource intensive

- Anonymize patients
- Re-create plans
- Embed errors
- Re-export and write up the chart documents
- Updates and maintanence
- Pool resources as a group

What is the Basis of Simulated Error Training?

- Based on educational techniques
- Simulation-based education
 - Aviation, military fields
 - Medical education
- Deliberate practice
- Method of improving performance
- Applies to any field, in and out of the workplace

Simulation-Based Education in Medicine

- Simulates real-life scenarios in a low risk environment
- Allows one to acquire and practice clinical skills without using real patients
- Formative and summative assessment
- Examples in medicine
 - · Simulation centers in medical schools
 - Physical exams, code response, IV placements
 - IV placements, cardiac arrest response

Simulation-Based Education in Radiation Oncology

Use in the radiation oncology field
 Training for emergency on-call treatments

- Communication and interpersonal skills

- Radiation oncologist plan reviews
 Embedded errors can potentially happen in real life
- Ability to assess and improve performance without risk to the patient

et. al "Improving Rediction Oncology Providers' Workload and Performance: Can Simulation-based Training Help?" BRD 2017

Deliberate Practice Technique to improve performance – reach expertise Different than just practicing Structured with feedback Identify weaknesses and course-correct Simulated error training – multiple mock data sets with answer keys

Early Experience Using Simulated Error Plans

- Used in medical physics for various applications
- Gopan et al study measured the error detection rate of physicists performing plan reviews
- 8 physicists performed reviews on 6 plans (total 17 errors embedded)
- Embedded errors were detected in 67% of reviews [58-75% CI]
- First to quantify the error detection rate of physics plan reviews

Early Experience Using Simulated Error Plans Mayo Arizona simulated error plan suite to facilitate education of new staff and residents to measure the efficacy of an in-house electronic checklist 20 simulated error plans were created (21 errors embedded) 9 physicists reviewed over a 5 week period Useful to inform guidelines for physics plan reviews and further develop checklist

Early Experience Using Simulated Error Plans University of Colorado – primary tool for resident training curriculum 5 simulated error plans (23 embedded errors) Goal to provide residents with the skills and knowledge to develop a method to perform effective plan reviews, wherever they end up working Curriculum overview

- Determine what to check
- Create a checklist
- Deliberate practice

- Discussion what they caught or didn't catch
- Ways of viewing plans to detect errors
- Formulate personal best practices maximizing detection ability (environmental and internal factors)
- Decision making skills about what to do after errors are detected

How Can Simulated Error Training Be Used in My Clinic?

- Various uses from early experiences
 - Robustness of current plan review practices
 - Efficacy of new tools
- Foundation of training curriculum

Initial and ongoing training

- Residents
- New and existing staff physicists

How Can Simulated Error Training Be Used in My Clinic?

Initial training

- Residents: develop and fine-tune their method
- New staff physicists: differences in software and equipment

Ongoing training

- New programs added, changing equipment/software vendors, significant software updates
- Accreditation needs
- Competency assessment initial and ongoing
- Method to objectively assess

Conclusions

- Being developed by AAPM WGPE as a follow up project to TG-275
- Training tool based on established educational techniques
- Early experiences
- Potential applications
- Initial training of new physicists
- Ongoing training
- Competency assessments
- Can be used by residents and practicing physicists

