

Dosimetric Benefits of Utilizing Intra-Fraction 3D Image-Guided Radiation Therapy (IGRT) for Stereotactic Body Proton Therapy (SBPT) for Locally Advanced Pancreatic Cancer (LAPC)

Hamed Hooshangnejad¹, Dong Han², Chin-Cheng Chen², Kai Ding²

1 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA 2 Department of Radiation and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA

Introduction

- Pancreatic cancer is the 4th leading cause of cancer-related death in the US.
- Proton therapy (PT) poses a great potential alternative treatment to photon therapy due to¹:
 - Dose escalation
 - While more organs-at-risk (OARs) Sparing
- With 2D Image Guidence (IG), 5 mm uniform optimization target volume (OTV) is widely accepted².
- However, conservative 5 mm OTV compermises plan quality.
- By Introducing 4D IG with real time gated proton therapy (RGPT), margins can be reduced to allow more room for dose escalation.

The Question is:

Can we reduce OTV margins from 5 mm without losing robustness and plan quality?

Methods and Results

Dosimetric Materials

- 5 LAPC patients previously treated with SBRT are planned for SBPT with 33 Gy(RBE) in 5 fractions.
- Three OTV expansion schemes are compared:
 - 1) 5mm Uniform Expansion (OTV_{5mm})
 - 2) 2mm Uniform Expansion (OTV_{2mm})
 - 3) Beam Specific Water Equivalent Thickness³ Non-Uniform Expansion (OTV_{WET})

2mm laterally —— Setup Uncertainity

OTV_{WET} = +
 3.5% GTV depth beam direction → Range Uncertanity

Is OTV_{2mm} the best scheme?!
But, how <u>robust</u> these plans are to uncertainties?

Robustness Evaluation

- SBPT plans are perturbed with:
- 2mm setup error in all directions
- 3.5% range error in beam direction

• Robustness Performance (R.O.): $R.O.(OTV_{2mm}) < R.O.(OTV_{5mm}) < R.O.(OTV_{WET})$

Conclusion

- OTV_{2mm} shows most promising results if only OAR-sparing and target coverage are considered.
- However, delivery of SBPT is associated with setup and proton beam range uncertainties.
- OTV_{WET} shows a highly robust performance compared to the other schemes.
- Contrary to what is expected from OTV_{5mm}, it does not perform well in robustness evaluation.
- The results of our study demonstrate a considrable improvement of overall SBPT plan quality when beam specific OTV_{WET} is used.

References

- T.T. Sio, et al., Spot-scanned pancreatic stereotactic body proton therapy: A dosimetric feasibility and robustness study, Phys. Medica 32(2), 331–342 (2016).
- 2 R.F. Thompson, et al., A dosimetric comparison of proton and photon therapy in unresectable cancers of the head of pancreas, Med. Phys. 41(8), 1–10 (2014).
- P.C. Park, et al., A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties, Int. J. Radiat. Oncol. Biol. Phys. 82(2), 329–336 (2012).