

Disclosures

Histosonics – Founder and Scientific Advisor with financial interest.

HistoSonics*

1 2

Histotripsy

Definition: Non-invasive, non-thermal, mechanical (cavitational) tissue ablation

histo- tissue [G. histos]
-tripsy to crush [G. tripsis]

4

3

5 6

1

ı

15 16

17 18

	erential Al		
m.	Threshold (MPa) PRF 100	Threshold (MPa) PRF 1000	Young's modulus
Tissue			(MPa)
Lung	1.578 ± 0.89	13.42 ± 1.08	0.0026
Fat	17.13 ± 1.41	13.26 ± 1.85	0.0032
Kidney	17.84 ± 1.48	14.56 ± 0.95	0.0061
Liver Heart	19.97 ± 0.77 20.03 ± 0.36	17.75 ± 1.07 17.06 ± 1.28	0.0087 0.0042
Heart Muscle		17.06 ± 1.28 19.12 ± 0.57	0.0042
Transcero.	21.01 ± 0.48 25.10 ± 0.69	10112 1 0101	0.0062
Skin	25.10 ± 0.69 26.54 ± 0.88	23.21 ± 1.01 24.27 ± 0.44	0.014 0.025
Tongue Tendon	26.54 ± 0.88 26.41 ± 0.52	24.27 ± 0.44 24.47 ± 0.49	380
Tendon Cartilage	26.41 ± 0.52 no cloud	24.47 ± 0.49 27.28 ± 0.85	0.90
Bone	no cloud	21.20 ± 0.05	18600
	tation initiation threshold for por with corresponding Young's mod		

33 34

35 36

45 46

47 48

51

53 54

Acoustic Cavitation Emission (ACE): Transcranial focal pressure measurement Estimated -3dB Width Pressure Aberration Steering Correction $[\;x\times y\times z\;]$ Est'd Peak % Increase Diameter* Method (mm) (MPa) (mm) 1.21 × 1.77 × 3.54 35 N/A 16 None Hydrophone 70 100% $1.17\times1.36\times2.75$ 40 ACE 58 66% $1.20\times1.58\times3.05$ 30 Aberration correction through excised human skull improves the focal pressure >60%

Liver Cancer Supported by NIH R01 CA211217 American Cancer Society (RSG-13-101-01-CCE) Forbes Institute Focused Ultrasound Foundation Courtesy of Zhen Xu, University of Michiga

58

57

Patient Population

8 patients

5 Female/3 Male (mean 64 yrs (range 46-87)

• 11 tumors

- 6 patients - 1 tumor

- 1 patient - 2 tumors

– 1 patient - 3 tumors

COLLEGE OF ENGINEERING & MEDICAL SCHOOL BIOMEDICAL ENGINEERING

 Mean tumor size 1.3 cm (0.5-2.3 cm) 1° Tumor Type Tumor Number

Colorectal 7

Gallbladder 2

HCC 1

Breast 1

Courtesy of Zhen Xu, University of Michigan

62

Results Secondary Endpoints Post - Local tumor regression 1 month 3 months • 90 % (9/10) Liver function Transient 2-3x elevation of AST/ALT which normalized 1 week after histotripsy in all patients Analgesic requirements No analgesic requests No reported pain - Abscopal effect • 2 in 8 patients biomarkers • In 1 patient, overall tumor burden reduced in 2 months Courtesy of Zhen Xu, University of Michig

Conclusions

- Controlling acoustic cavitation and its associated effects is possible using ultrasound fields.
- Histotripsy provides a means for tissue disruption using a non-thermal mechanism.
- A wide variety of applications are envisioned histotripsy therapies.

63

64