

Proton Flash-RT, the fastest way to the clinic?

Jan Schuemann

- **Associate Professor**
- Head of the Multi-Scale Monte Carlo Modeling Lab
- **Massachusetts General Hospital & Harvard Medical School**

JULY 12–16 VIRTUAL EASTERN TIME [GMT-4]

MASSACHUSETTS GENERAL HOSPITAL

Options of technologies for clinical translation

- ★ Electrons
- ★ MV photons
- **★** Protons
- \star lons
- ★ Intra-operative (electrons or kV photons)

★ My personal opinions.

Electrons

- ★ 'Original' Flash irradiator
- ★ Highly flexible dose rate
- ★ Single pulse control
- ★ Multiple in vivo experiments
- ★ Already performed clinical 'test'
- ★ Caveats:
 - ★ Low energy / low penetration depth
 - ★ Specialized research machine

★ More details in the last talk

Bourhis, J., et al. (2019). Radiotherapy and Oncology, 139, 18.

J. Schuemann, AAPM, 2020

MV photons

- ★ Linac based approaches
- ★ Used for small animals
- ★ Clinically usable Flash dose rates (up to 120 Gy/s in position 3)
- ★ Flatness good enough for preclinical studies

Reversible to standard clinical operation

PHASER

- **★** Originally designed to reduce motion effects and provide cost effective easily transportable RT module
- **★** No moving parts
- ★ Very high energy electrons (100-200 MeV)
- ★ Achieves Flash-like dose rates

Maxim, P. G., Tantawi, S. G., & Loo, B. W. (2019). Radiotherapy and Oncology, 139, 28–33.

Intra-Op

- ★ Often not thought of
- ★ Short distance from accelerator
- ★ High dose rates often 'readily' available
 - ★ Potentially limited to shorter applicators
- **★** IORT provides limited applications

Protons and heavy ions

- ★ Several small animal systems designed (protons)
- ★ No heavy ion Flash machine yet

★ Bragg peak vs. Shoot through?

- ★ For small animals both is OK
- ★ Flash is normal tissue effect, Bragg peak in tumor.
- ★ For patients:
 - Is it worth giving up the Bragg peak for the Flash effect?

The case for protons - Distal Layer

- ★ Proton therapy typically delivers treatments layer by layer
- ★ Starting with the distal layer
- ★ Distal layer is always in healthy tissue
- ★ Sometimes in OARs
- \star High RBE \rightarrow potentially highest biological dose!
- ★ Potentially high impact of Flash
- **★** For double scattering delivery this would require single **Modulator Wheel rotation**
- ★ Pencil beam scanning would require single scan

Treatment Room at UMCG

by Drosoula Giantsoudi

J. Schuemann, AAPM, 2020

UPenn implementation

★ Double scattering system

★ Rigorous detector system ★ Including prompt gamma detector

★ See next talk

Diffenderfer, E. S., et al. (2020). IJROBP, 106(2), 440.

J. Schuemann, AAPM, 2020

MGH implementation

- ★ Beamline design with Monte Carlo and analytical tools
- ★ Double scattering system
- ★ Similar to UPenn, longer throw
- ★ 1.6 cm x 1.2 cm field (90%)
- ★ Up to 2 mice in a row

 \star ~10-15% dose difference

- ★ MRI for setup relative to mouse holder
- ★ 2-4 cm plastic block to absorb aperture scattering

MGH dosimetry

★ Combine

- ★ Thin gap ion chamber
- ★ Faraday cup
- ★ Thimble chamber
- ★ Diode
- ★ Film
- ★ New: biological dosimetry
- ★ Used 3D printer to measure dose profiles (non-Flash mode)
- ★ Monte Carlo for dose distributions

Ethan W. Cascio and B. Gottschalk, arXiv:1908.03763v1 (2019)

Dose profiles at center of mice

J. Schuemann, AAPM, 2020

The case for protons - Scattering

- ★ 'Instant' distal layer
- ★ Usually repainted multiple times (RMW rotation)
- ★ Dose rate in proximal layers likely not Flash
- ★ Dose rate depends on
 - ★ Field size
 - ★ Accelerator current
- ★ Good for small fields

\star Is it worth giving up the dose distribution achievable with scanning?

M. Chuong et al., J Gast. Onc. 2018

The case for protons - Scanning

- ★ High dose rate in single pencils
- ★ Lateral scanning is fast
- ★ Depth scanning not as fast
- ★ No more rescanning (is it needed?)
- ★ May need highly reduced spot map
- ★ What about the penumbra of each pencil?

★ Is it better?

Dose

Dose Rate

The Mechanism? Chemistry for protons / ions

- lead to chemical reactions
- species that can recombine

★ Radiation induced ionizations (Radiolysis products) ★ High-LET tracks produce denser clusters of chemical →Lower LET should cause higher Flash effects **★** Heavy ions can produce molecular oxygen at the

- Bragg peak
 - ★ Opposite to supposed Flash mechanism of Oxygen depletion.
 - ★ Potential to selectively turn "On" and "Off" the Flash effect in different regions? (Colangelo, Azzam, Radiat. Res. 2020)

Ramos et al. Radiat. Res. (submitted)

Optimal targets / first targets

- ★ Radiosurgery (already high dose and dose rate)
- ★ Sites with current hypofractioantion (e.g. liver, lung, brain)
 - ★ how will it impact of number of fields
- ★ Will Flash lead to hypofractionation for sites without current hypofractionation?
- ★ Sites where NTCP is currently limiting our ability to escalate dose
- ★ Moving targets (requires imaging)
- ★ Intra-operative radiation (e.g. pancreas)

Courtesy J. Daartz

2 beam spots (single spot each)

Research questions to be answered in future studies

- ★ What is the underlying mechanism(s)?
 - ★ Single or multiple involved mechanisms (de-oxygenation, lymphocytes, inflammation, ...)
- \star How robust is the effect?
- ★ What are the timing constraints?
 - ★ Intra fraction time limitations
 - ★ Inter fraction time and number limitations
- \star Are there a field size effects?
- * What happens at the field edges (high dose, high but not Flash dose rate)?
- ★ How does the Flash Effect interact with other treatments/drugs?

MASSACHUSETTS GENERAL HOSPITAL

RADIATION ONCOLOGY

Concluding remarks

- * Many groups are working on answering the outstanding questions
- ★ There is a large potential for Flash
- ★ But also many pitfalls
- ★ Predestined for small tumors?
 - ★ Flash vs. SBRT
- Large tumors: \star
 - ★ Technical challenges
 - ★ Gaps in understanding of the mechanism
- **★** Translation into the clinic should not be rushed

★ Potential Benefit of single treatment, even if Flash is only as good as fractionation

Acknowledgements

- MGH Physics group \star
- MGH Radiation Biology group \star
- Steele Lab \star
- **TOPAS and TOPAS-nBio collaborations** \star
- RRS and its members \star
- Funding agencies: \bigstar
- NIH/NCI \star
- Damon Runyon Foundation \star
- The Brain Tumour Charity \star
- And many more. \star

