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What makes a good medical image?




Background

* Image quality (1Q) should be assessed for medical
applications

* Machine learning (ML) methods are widely employed in
modern imaging applications

* Less explored is the use of ML for assessing imaging quality
and guiding system/algorithm design and optimization for
specific tasks.




Outline

* Objective image quality (IQ) assessment for specific tasks

* Machine learning-based tools for imaging system/algorithm
optimization

- Learning stochastic object model (SOM) to characterize anatomical
variations using geometric attribute distribution models and organ
contours in radiation therapy

- Learning stochastic object model (SOM) from imaging measurements
using AmbientGANs
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IQ assessment: diagnostic imaging tasks

* Does the patient have any  * Do they have a * Do they have
cavities in their teeth? broken bone? cancer?




IQ assessment: radiation therapy tasks

* Tumor/OAR segmentation
- how exactly the tumor size is?
- Segmentation uncertainty?

* RT treatment plan quality
* Treatment outcome



Image quality assessment (IQA)

* In order to optimize the performance of imaging
systems/algorithms, figures-of-merit (FOMs) that describe
|Q are required.

* |Q metrics also permit the comparison of information
contained in images acquired by different imaging modalities

* |Q metrics can be divided into two broad classes:
- Physical-based IQ measures (resolution, SNR, CNR, etc)
- Objective, or task-based, IQ measures




Limitations of physical-based IQ measures

* Physical measures, such as the CNR, do not always correlate
with signal detectability or other task-based measures.

Equal CNR

Courtesy of Prof. Matthew Kupinski, U Arizona
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Task-based IQA

* Computer-simulation is an important tool used in task-based IQA

* Objective 1Q assessment requires knowledge of all sources of
randomness in the measured image data.
* Sources of randomness in image data include:
- Randomness in the imaging system
- Measurement noise

- Variations in the object to-be-imaged

* |deally, objective IQ measures are averaged over all sources of
randomness in the measured data to form figures of merit
(FOMs).

* ROC curve is one example of a task-based IQA metric for
diagnostic imaging
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Task-based 1Q assessment in Radiation Therapy

* First theory developed for task-based IQ assessment in RT
based on therapeutic outcomes:

Objective assessment of image quality VI: imaging in
radiation therapy

Harrison H Barrett! ’2, Matthew A Kupinskil ’2, Stefan Miieller?’,
Howard J Halpern4, John C Morris III° and Roisin Dwyer6

Phys. Med. Biol. 58 (2013) 8197-8213

* |Q Figure-of-Merit (FOM):

- AUTOC: the area under the therapy operating characteristic (TOC)
curve

%@ 1L ILLINOIS Bioengineering



Task-based IQA in Radiation Therapy

* TOC curve:

- Plots of the probability of
tumor control (TCP) vs. the
probability of normal tissue
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General framework of the IQA-in-RT

Implementation of the IQA-in-RT Theory

Medical image simulation
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| som _ Image Segmentation
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ITT;,% ->‘ Simulated |  Target& Organ - Automatic, manual, or any
Model Images l other algorithms

Trea—:f,?f,:'t'f::ﬁning j RT Treatment planning &
& Optimization optimization
Input #3:
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Radiobiological modeling
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Organ Contours - ..

e TOC & AUTOC calculation

Steven Dolly, Yang Lou, Mark Anastasio, Hua Li*, “Task-Based Image Quality Assessment in Radiation Therapy: Initial Characterization
and Demonstration with Computer-Simulation Study”, Physics in Medicine and Biology, 2019.




SOM: describing object randomness

* Direct estimation of pr( f) is rarely tractable.

The objects to-be-imaged
are samples from an
(unknown) probability
density function

* Stochastic object model (SOM) enables the simulation of
object ensembles with prescribed statistical properties for

use in simulation.




Learning SOMs for characterizing
anatomical variations

* Motivation: available databases of high-quality volumetric
images and organ contours in RT

* Learn geometric attribute distribution (GAD) models
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Steven Dolly, Yang Lou, Mark Anastasio, Hua Li* “Learning-based Stochastic Object Models for Characterizing
Anatomical Variations”, Physics in Medicine and Biology, 2018.
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Learning inter-structural centroid GAD of multiple organs
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Learning intra-structural shape GAD of single organ

Mean Shape Realization #1 Realization #2

Left
Femoral
Head

Bladder




Create randomly-generated objects based on learned GADs

KG‘ K.]rn

k=1

* Sampling the GADs: G=G+) apy/A{ef =T+ > Brny/Anern
k=1

Organ models: prostate, bladder, rectum, femoral heads, pelvic bone, and seminal vesicles
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Example Implementation of the IQA-in-RT Framework

TCP/NTCP
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IQ Assessment based on AUTOC vs other IQA metrics

IQA Metric Value
IQA Metric Value

0 10 20 30 40 50
Relative CTDI\arol Filter Parameter (a)

Optimizing CT imaging dose Optimizing FBP reconstruction filter

The AUTOC compared to various IQA metrics for optimizing imaging dose and
image reconstructions (the filter parameter)
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Learning SOMs using deep generative models

* A generative model defines a process that could have
generated the observed data

* Once trained using observed (training) imaging data, a
generative model can represent the SOM

generated distribution true data distribution

p(x)

unit gaussian

generative

model
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Image credit: https://blog.openai.com/generative-models/




Generative Adversarial Networks (GANs)

* Generative Adversarial Networks (GANs) [Goodfellow, I., et
al. NIPS. 2014]

- Generator network G (z; 8;) learns by competing against an
adversary - a neural network called the discriminator D (x; 8p).

- The discriminator attempts to distinguish between samples from real
images and samples produced by the generator, or fake images.

Fake image Trained generator (Expert counterfeit)

k ;
Real image zeR V)
| ( N ;
S\ ) A\
Generator A ‘ .
% ..’. ] - ALY ‘
g B

(Counterfeit) Discriminator

(Detective)

During training After training

Image credit: Biomedical Imaging Group, EPFL and Radiopaedia
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Need for a different type of GAN

* It is desirable to train a GAN on experimental data, so that
the learned SOM can produce realistic images that serve as
digital phantomes.

* However, conventional GANs are trained on acquired or
reconstructed images that contain noise and potentially
reconstruction artifacts.

* [deally, we would like to establish a SOM from experimental
measurements.
- Want to learn object variability, not measurement noise
- An Ambient GAN can do this!

- We have developed a progressively-growing Ambient GAN
(ProAmGAN) that can work with large images

W. Zhou, S. Bhadra, F. Brooks, H. Li, M. Anastasio. "Learning stochastic object models from medical imaging
measurements using Progressively-Growing AmbientGANs”, https://arxiv.org/abs/2006.00033
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AmbientGANs

* AmbientGAN [Bora, A., et al. ICLR. 2018]

- Discriminator distinguishes between real and simulated
measurements

- We acquire imaging measurements: 8 = Hn(f) = Hf +n

fe RN g cRM
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l— G(z; 06)
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True and ProAmGAN-generated MRI objects




ProAmGAN vs conventional GAN

Conventional
GAN

ProAmGAN

ProAmGAN - learns object variability, not noise
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True and ProAmGAN-generated CT objects




True and ProAmGAN-generated Chest X-ray objects

True objects




Summary

* When optimizing imaging systems, we need to account for
object randomness

* Using GAD models to characterize anatomical variations and
establish SOMs from RT contours

* Using an ambientGAN coupled with a measurement model —
to establish SOMs from experimental measurements

* By use of the trained SOM, we can sample objects from the
unknown PDF of interest and perform simulation studies

* The SOM can then be employed for the optimization of
components in the IQA-in-RT workflow
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