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What makes a good medical image?
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• Image quality (IQ) should be assessed for medical 
applications

• Machine learning (ML) methods are widely employed in 
modern imaging applications

• Less explored is the use of ML for assessing imaging quality 
and guiding system/algorithm design and optimization for 
specific tasks.
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Background
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• Objective image quality (IQ) assessment for specific tasks

• Machine learning-based tools for imaging system/algorithm 
optimization

- Learning stochastic object model (SOM) to characterize anatomical 
variations using geometric attribute distribution models and organ 
contours in radiation therapy

- Learning stochastic object model (SOM) from imaging measurements 
using AmbientGANs
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Outline
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IQ assessment: diagnostic imaging tasks

• Does the patient have any 
cavities in their teeth?

• Do they have a 
broken bone?

• Do they have 
cancer?
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• Tumor/OAR segmentation
- how exactly the tumor size is?
- Segmentation uncertainty?

• RT treatment plan quality
• Treatment outcome
• …
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IQ assessment: radiation therapy tasks
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• In order to optimize the performance of imaging 
systems/algorithms, figures-of-merit (FOMs)  that describe 
IQ are required. 

• IQ metrics also permit the comparison of information 
contained in images acquired by different imaging modalities 

• IQ metrics can be divided into two broad classes:
- Physical-based IQ measures  (resolution, SNR, CNR, etc)
- Objective, or task-based, IQ measures

Image quality assessment (IQA)

7



Bioengineering

• Physical measures, such as the CNR, do not always correlate 
with signal detectability or other task-based measures.
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Limitations of physical-based IQ measures

Courtesy of Prof. Matthew Kupinski, U Arizona
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• Computer-simulation is an important tool used in task-based IQA
• Objective IQ assessment requires knowledge of all sources of 

randomness in the measured image data.

• Sources of randomness in image data include:
- Randomness in the imaging system
- Measurement noise

- Variations in the object to-be-imaged

• Ideally, objective IQ measures are averaged over all sources of 
randomness in the measured data to form figures of merit 
(FOMs).

• ROC curve is one example of a task-based IQA metric for 
diagnostic imaging
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Task-based IQA
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• First theory developed for task-based IQ assessment in RT 
based on therapeutic outcomes:

• IQ Figure-of-Merit (FOM):
- AUTOC: the area under the therapy operating characteristic (TOC) 

curve
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Task-based IQ assessment in Radiation Therapy

Phys. Med. Biol. 58 (2013) 8197–8213



Bioengineering

• TOC curve:
- Plots of the probability of 

tumor control (TCP) vs. the 
probability of normal tissue 
complications (NTCP) as the 
overall dose level of a 
radiation treatment is varied

- Analogy to receiver operating 
characteristic (ROC) curves 
and their variants

• TOC can be defined for a 
single patient and for a 
population of patients
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Task-based IQA in Radiation Therapy
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General framework of the IQA-in-RT

• Medical image simulation
- CT, MRI, etc.

• Image Segmentation
- Automatic, manual, or any 

other algorithms

• Radiobiological modeling
- Equivalent uniform dose 

(EUD)
- …

• RT Treatment planning & 
optimization 

- IMRT, SBRT, etc. 

• TOC & AUTOC calculation

Steven Dolly, Yang Lou, Mark Anastasio, Hua Li*, “Task-Based Image Quality Assessment in Radiation Therapy: Initial Characterization
and Demonstration with Computer-Simulation Study”, Physics in Medicine and Biology, 2019.
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• Direct estimation of             is rarely tractable.

• Stochastic object model (SOM) enables the simulation of 
object ensembles with prescribed statistical properties for 
use in simulation.
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SOM: describing object randomness

The objects to-be-imaged 
are samples from an 
(unknown) probability 
density function 
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• Motivation: available databases of high-quality volumetric 
images and organ contours in RT

• Learn geometric attribute distribution (GAD) models
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Learning SOMs for characterizing 
anatomical variations

Steven Dolly, Yang Lou, Mark Anastasio, Hua Li*, “Learning-based Stochastic Object Models for Characterizing
Anatomical Variations”, Physics in Medicine and Biology, 2018.
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Learning inter-structural centroid GAD of multiple organs

Centroid training data Mean centroid and centroid distribution
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Learning intra-structural shape GAD of single organ

Left 
Femoral 

Head

Bladder

Mean Shape Realization #1 Realization #2
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• Sampling the GADs:
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Create randomly-generated objects based on learned GADs

Organ models: prostate, bladder, rectum, femoral heads, pelvic bone, and seminal vesicles
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Example Implementation of the IQA-in-RT Framework
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IQ Assessment based on AUTOC vs other IQA metrics

The AUTOC compared to various IQA metrics for optimizing imaging dose and 
image reconstructions (the filter parameter)

Optimizing CT imaging dose               Optimizing FBP reconstruction filter
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• A generative model defines a process that could have 
generated the observed data

• Once trained using observed (training) imaging data, a 
generative model can represent the SOM

Learning SOMs using deep generative models

Image credit: https://blog.openai.com/generative-models/
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• Generative Adversarial Networks (GANs) [Goodfellow, I., et 
al. NIPS. 2014]

- Generator network 𝐺𝐺(𝑧𝑧;𝜃𝜃𝐺𝐺) learns by competing against an 
adversary - a neural network called the discriminator 𝐷𝐷(𝑥𝑥;𝜃𝜃𝐷𝐷). 

- The discriminator attempts to distinguish between samples from real
images and samples produced by the generator, or fake images.

Generative Adversarial Networks (GANs) 

Image credit: Biomedical Imaging Group, EPFL and Radiopaedia

During training After training

Trained generator (Expert counterfeit)
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• It is desirable to train a GAN on experimental data, so that 
the learned SOM can produce realistic images that serve as 
digital phantoms.

• However, conventional GANs are trained on acquired or 
reconstructed images that contain noise and potentially 
reconstruction artifacts.

• Ideally, we would like to establish a SOM from experimental 
measurements.

- Want to learn object variability, not measurement noise
- An Ambient GAN can do this!
- We have developed a progressively-growing Ambient GAN 

(ProAmGAN) that can work with large images
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Need for a different type of GAN

W. Zhou, S. Bhadra, F. Brooks, H. Li, M. Anastasio. ”Learning stochastic object models from medical imaging 
measurements using Progressively-Growing AmbientGANs”, https://arxiv.org/abs/2006.00033

https://arxiv.org/abs/2006.00033
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• AmbientGAN [Bora, A., et al. ICLR. 2018]
- Discriminator distinguishes between real and simulated 

measurements 
- We acquire imaging measurements:
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AmbientGANs
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True and ProAmGAN-generated MRI objects

Red boxes: ProAmGAN-produced objects (SOM)
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ProAmGAN vs conventional GAN

ProAmGAN - learns object variability, not noise

Conventional
GAN

ProAmGAN
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True and ProAmGAN-generated CT objects

ProAmGAN-generated objects

True objects
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True and ProAmGAN-generated Chest X-ray objects

ProAmGAN-generated objects

True objects
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• When optimizing imaging systems, we need to account for 
object randomness

• Using GAD models to characterize anatomical variations and 
establish SOMs from RT contours

• Using an ambientGAN coupled with a measurement model –
to establish SOMs from experimental measurements

• By use of the trained SOM, we can sample objects from the 
unknown PDF of interest and perform simulation studies

• The SOM can then be employed for the optimization of 
components in the IQA-in-RT workflow

Summary
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