AI in outcome and toxicity prediction

Johan van Soest, PhD
Maastro Clinic, Maastricht University Medical Centre+, Maastricht, The Netherlands
Outcome (and toxicity) prediction

Diagnosis

X X X

?
Model learning on clinical trials

- Models predicting LR, DM or OS

- (neo-)adjuvant chemo given?
 - Neo-adjuvant to what?

- “Trial arm indicates chemotherapy type”
 - Encoded as “1” and “2”
 - Size of trial arm is not equal to published paper

<table>
<thead>
<tr>
<th>Trial</th>
<th>#pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>EORTC22921</td>
<td>1011</td>
</tr>
<tr>
<td>FFCD 2903</td>
<td>742</td>
</tr>
<tr>
<td>CAO/ARO/AIO 94</td>
<td>799</td>
</tr>
<tr>
<td>Polish I</td>
<td>312</td>
</tr>
<tr>
<td>ACCORD</td>
<td>598</td>
</tr>
<tr>
<td>Dutch TME</td>
<td>1731</td>
</tr>
<tr>
<td>Swedish trial</td>
<td>908</td>
</tr>
<tr>
<td>I-CNR-RT</td>
<td>634</td>
</tr>
<tr>
<td>Glynne-Jones cohort</td>
<td>113</td>
</tr>
<tr>
<td>INTERACT</td>
<td>538</td>
</tr>
<tr>
<td>CAO/ARO/AIO 04</td>
<td>1236</td>
</tr>
<tr>
<td>TROG 01-04</td>
<td>323</td>
</tr>
<tr>
<td>Polish II</td>
<td>515</td>
</tr>
<tr>
<td>Nordic trial</td>
<td>207</td>
</tr>
<tr>
<td>Total:</td>
<td>9667</td>
</tr>
</tbody>
</table>

Valentini et al. In submission
Model learning on clinical trials

Valentini et al. In submission
Model learning on clinical trials

• Interactions on variables are important
 • Hypothesis: Influenced by inclusion criteria of trials
 • Only in text of manuscript, not noted in actual (meta) data

• Hence, context of outcome prediction models are important!
 • E.g. treatment guidelines / protocols
Model learning for treatment toxicity

Model assessment

• “Standard” model performance measures
 • Discrimination (C-index / AUC)
 • Calibration (in-the-large & slope & plot)
 • Accuracy / F-score / PPV / NPV and associated curves

• But what if a model doesn’t work?
Assess cohort differences / similarity

<table>
<thead>
<tr>
<th>id</th>
<th>cT</th>
<th>cN</th>
<th>ECOG</th>
<th>2y_mort</th>
<th>Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Y</td>
<td>Train</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>N</td>
<td>Train</td>
</tr>
<tr>
<td>3</td>
<td>3a</td>
<td>9</td>
<td>1</td>
<td>N</td>
<td>Train</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>NA</td>
<td>3</td>
<td>N</td>
<td>Test</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>Y</td>
<td>Test</td>
</tr>
<tr>
<td>6</td>
<td>2b</td>
<td>0</td>
<td>3</td>
<td>Y</td>
<td>Test</td>
</tr>
</tbody>
</table>

Can we predict whether a patient belongs to the training or test cohort?

Yes (high AUC): cohorts are different
No (AUC ~0.5): cohorts are similar

Input variables	Predicted

Model assessment & cohort differences

- **Model works on same patient population**
 - Generalizable model

- **Model works on different patient population**
 - Transferable model

- **Model does not work on same patient population**
 - Valid model?

- **Model does not work on different patient population**
 - Model for specific population?

Clinical Use?

- Do you have all variables available?
- Does it work on “my” patients?
- When is good, good enough?
- Continuous monitoring?

- Needs “commissioning” and continuous QA of models
Thank you

Netherlands
• MAASTRO, Maastricht, Netherlands
• Radboudumc, Nijmegen, Netherlands
• Erasmus MC, Rotterdam, Netherlands
• Leiden UMC, Leiden, Netherlands
• Catharina Hospital, Eindhoven, Netherlands
• Isala Hospital, Zwolle, Netherlands
• NKI Amsterdam, The Netherlands
• UMCG, Groningen, Netherlands

Europe
• Policlinico Gemelli & UCSC, Roma, Italy
• UH Ghent, Belgium
• UZ Leuven, Belgium
• Cardiff University & Velindre CC, Cardiff, UK
• CHU Liege, Belgium
• Uniklinikum Aachen, Germany
• LOC Genk/Hasselt, Belgium
• The Christie, Manchester, UK
• State Hospital, Rovigo, Italy
• St James Institute of Oncology, Leeds, UK
• U of Southern Denmark, Odense, Denmark
• Greater Poland Cancer Center, Poznan, Poland
• Oslo University Hospital, Oslo, Norway

Africa
• University of the Free State, Bloemfontein, South Africa

Asia
• Fudan Cancer Center, Shanghai, China
• Suining Central Hospital, Suining, China
• CDAC, Pune, India
• Tata Memorial, Mumbai, India
• HGC Oncology, Bangalore, India
• Apollo Hospitals, Chennai, India

North America
• RTOG, Philadelphia, PA, USA
• MGH, Boston, MA, USA
• University of Michigan, Ann Arbor, USA
• Princess Margaret CC, Canada

South America
• Albert Einstein, Sao Paulo, Brazil

Australia
• University of Sydney, Australia
• Westmead Hospital, Sydney, Australia
• Liverpool and Macarthur CC, Australia
• ICCC, Wollongong Australia
• Calvary Mater, Newcastle, Australia
• North Coast Cancer Institute, Coffs Harbour, Australia

Industry
• Varian, Palo Alto, CA, USA
• Philips Research, Bangalore, India
• SoHard GmbH, Fuerth, Germany
• Microsoft, Hyderabad, India
• Mirada Medical, Oxford, UK
• C2 Health Insurance, Tilburg, NL
• Siemens, Malvern, PA, USA
• Roche, Woerden, NL
• Medical Data Works, Heerlen, NL

Research funding
• STW-Perspectief (duCAT, STRaTeGy)
• EUREKA Eurostars (SeDI, CloudAtlas, DART, DECIDE)
• Dutch Research Council (CARRIER, BIONIC, TRAIN, ELIXIR)
• Care Institute Netherlands (PROSPECT)
• Queen Wilhelmina Foundation (PROTRaIT, HealthRI)
• National Institutes of Health (RADIOMICS)