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AI in the Clinic: Error Detection and Prevention
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Decision Support System (DSS): guide judgements & actions

DSS for oncologists: 
– Predict disease presence (diagnosis) or outcomes (prognosis)

DSS for physicists: 

– Does this machine require maintenance? 

– Is this treatment plan acceptable and deliverable?

– Are there gaps in my quality program? 

AI in the Clinic

4
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AI for  the Clinic     AI in the Clinic  
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Tension between Accuracy and Interpretability 

Machine Prediction meets Human Judgement

Workflow Integration
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Traditional Rule-based 

Compare with historical or 

reference values 

Statistical outlier methods:    

mean, standard deviation

Statistical Process Control

Error Detection

6

Machine Learning-based 

Linear regression

Classification model

Random Forests, Isolation Forests

Convolutional Neural Networks
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Patient specific QA

– Time consuming, difficult to interpret

– Insensitive, often unable to catch errors

– Occurs late in the planning process

Error Detection in Patient Specific QA

7 Courtesy of Andrea McNiven
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Patient specific QA

– Time consuming, difficult to interpret

– Insensitive, often unable to catch errors

– Occurs late in the planning process

AI for patient specific QA

– Use past patient specific measurements 

to train and test the model to predict if 

a plan will pass QA

Error Detection in Patient Specific QA

8 Courtesy of Andrea McNiven
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AI for PSQA

9

1. G. Valdes et al 2016 Med Phys 43(7): 4323 – 4334.

2. G. Valdes et al 2017 J Appl Clin Med Phys 18(5): 279-284.

3. D. Granville et al 2019 Phys Med Biol 64: 095017.

4. L. Wootton et al 2018 IJROBP 22(1): 219- 228.

5. S. Tomori et al 2018 Med Phys 45(9): 4055 – 4065.

6. M Nyflot et al 2019 Med Phys 46(2): 456 - 464

7. J Li et al 2019 IJROBP 105(4): 893 – 902. 

8. T. Ono et al 2019 Med Phys 46(6): 3823 – 3832.

…

• Planar diode array [1,2,7], Film [5]

• 3D Diode Array [3,8]

• Portal Dosimetry or EPID [2,4]  

Detectors 

• Poisson regression [1,2,7]

• Random forest [7,8]

• Support vector classifier [3,6]

• CNN [5,6,8]

Models

• Gamma pass rate [1,2,5,7,8]

• Mean dose difference [3]

• Errors/Outliers [4,6]

Predicted Values 

• Plan based & complexity [1,2,3,5,7,8]

• Machine QC results [3]

• Radiomics [4,6]

Features 
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Unlike traditional measurements, 

predictions can be interrogated to 

determine most relevant features.

This inferred knowledge can be fed back 

into continuous quality improvement.

• Planning

• Machine QA

• Detector limitations

AI-facilitated interpretation
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Top 30 most predictive features

MU factor

Detector Calibration

In-plane symmetry

D. Granville et al 2019 Phys Med Biol 64: 095017.
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• “Virtual IMRT QA” (Valdes 2016)

• ~80-200 plans to train model

• Complimentary to measurement-

based program

AI in a different clinic
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Institution 1

Diode array

498 plans

Institution 2

Portal dosimetry

139 plans

Model
Features

>90 plan complexity metrics (CIAO, 

modulation factor, irregularity factor…)

Prediction

Gamma Pass Rate

3%/3 mm Threshold: 10%

3.5% accuracy3% accuracy

1. G. Valdes et al 2016 Med Phys 43(7): 4323 – 4334.

2. G. Valdes et al 2017 J Appl Clin Med Phys 18(5): 279-284
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Error Detection in Treatment Planning
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E. Ford et al 2012 IJROBP 84(3): e263 - 269
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Error Detection in Treatment Planning
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- Joint probability distributions: what is the 

probability of certain RT parameters, given 

set of clinical information

- Flag low probability events

- Mimics how humans check plans

Technical & Clinical Expert Validation

- Network AUCs = 0.88 – 0.98

- Human Expert AUCs = 0.90 +/- 0.01

Kalet et al 2015 Phys Med Biol 60: 2735
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Error Detection in Treatment Planning
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- Joint probability distributions: what is the 

probability of certain RT parameters, given 

set of clinical information

- Flag low probability events

- Mimics how humans check plans

Validation:

- Network AUCs = 0.88 – 0.98

- Human Expert AUCs = 0.90 +/- 0.01

AUC by years of historical data trained on: 

2 years: 0.82

3 years: 0.85

4 years: 0.89

5 years: 0.88

Recommendation

Train on 4 years of data, update model yearly

Luk et al 2019 Med Phys 46(5): 2006 – 2014.
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AI for Peer Review Rounds
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AI for Peer Review Rounds
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Aim: Develop an automated framework for 

complex case prioritization in peer review rounds

Prospectively assigned binary complexity scores 
Complex plan (discussion) = 1     [n=38]

Standard plan (no discussion) =0   [n=164]

Testing Set 

N = 202

(15 consecutive weeks)

Plans from 

Peer Review Rounds
Complexity Score [0,1]

Isolation Forest Model

Trained on historical dataset

N= 3460 plans

Complexity Prioritization Score 

[0 – 1]
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Isolation Forest for Outlier Detection
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Isolation Forest for Outlier Detection
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Predicting Complexity
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Extracted Features Included: 

• Image and radiation dose features 

(filters/deep learning)

• Contour features

• Radiation beam features (angles, MUs)

Courtesy of Chris McIntosh
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Predicting Complexity
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Extracted Features Included: 

• Image and radiation dose features 

(filters/deep learning)

• Contour features

• Radiation beam features (angles, MUs)

Courtesy of Chris McIntosh
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Interpretation
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True Positive False Negative
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Princess Margaret: Then and Now
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Historical Training Set (2016) Testing Set (2018)

TPS Pinnacle RayStation

Nomenclature Institutional AAPM TG-263

Clinical Practice Few IMNs treated Many IMNs treated

• Changes in practice impact the applicability of trained models

• Clinical data has a half life

• Data curation and feature selection require domain expertise and many iterations



23

• Limitations of Incident Learning Systems: 

– Voluntary 

– Require strong safety culture for high volume reporting

– There will always be unreported events

• Objective: Develop a radiation oncology-specific trigger tool to estimate 

the probability of a grade 3-4 near-miss event for each treatment course 

using only the data available in the OIS.

AI for near miss identification

23
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AI for near miss identification
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Hartvigson, P., et al., A Radiation Oncology-Specific Automated Trigger Indicator Tool for High-Risk, 

Near-Miss Safety Events PRO (2019)

3159 courses

(1509 ILS)

2210 courses

949

courses
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AI for near miss identification
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AUC: 0.650

AUC: 0.652

9/20 triggers significant: 

• Hidden/new/deleted fields

• New prescription

• Documentation

• With ILS entry: causal effect in 50%

• Without ILS entry: 

• 5/25 flagged for additional review

• 2/5 were unreported near miss 
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Error Prevention: QA the AI!
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Assess risk through systematic risk analysis (TG-100)

Mitigate risk with specialized AI-QA program design

Three key aspects of safe deployment: 

• User training on potential failure modes

• Comprehensive manual review

• Automated QA (flag for human review)
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AAPM Machine Learning Subcommittee (MLSC) Task group Proposal: 

Quality Assurance for Machine Learning-based Clinical Technologies 

Co-chairs: Dr. Habib Zaidi & Dr. Gilmer Valdes

Error Prevention: QA the AI!
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Assess risk through systematic risk analysis (TG-100)

Mitigate risk with specialized AI-QA program design

Three key aspects of safe deployment: 

• User training on potential failure modes

• Comprehensive manual review

• Automated QA (flag for human review)
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Where do Medical Physicists fit in?
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Physicists are technical experts with clinical domain expertise

We are uniquely positioned to shape the future of AI in medicine

• Data: governance, collection, curation

• Problem definition

• Model development, testing, and tuning

• Workflow design, validation, and implementation

• Supervision, maintenance

• Development and execution of QA for AI
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Thursday, 7/16/2020, 2:00 PM - 3:00 PM [Eastern Time (GMT-4)] Room: Track 5

A Generalizable Contour Validation Method Using Deep Learning-Based Image Classification

Y Zhang, F Ceballos, Y Liang, L Buchanan, X Li

E Posters:

Reducing IMRT QA Workload by 95% and Keeping the Same Level of Quality Control T Nano, M Descovich, E Hirata, Y Interian, G Valdes

Development and Validation of a Machine Learning Predictive Model of IMRT Patient-Specific Quality Assurance Approval Using Gamma-

Radiomics C Yaly, J Lizar, P Santos, A Colello Bruno, G Viani, J Pavoni

Towards a Treatment Planning Optimization Framework Utilizing Predicted Quality Assurance Outcomes From a Machine Learning Model to 

Maximize Plan Quality and Deliverability P Wall, J Fontenot

Error Detection and Classification in Patient Specific IMRT QA with Dual Neural Networks N Potter, K Mund, J Andreozzi, J Li, C Liu, G Yan

Dose Prediction for Patient-Specific QA Using a Convolutional Neural Network K Mund, G Yan

Does Radiomics Have the Potential to Assess KV-CBCT Image Performance Acquired From Phantom Data Used for Daily QA?

M Shenouda, N Baughan, J Cruz Bastida, E Pearson, H Al-Hallaq

Out of Sample Performance of a Deep Learning Based Registration Quality Assurance Method X Zhou, S Galib, H Lee, G Hugo

Towards Quality Assurance for First AI-Driven Online Adaptive Radiotherapy Based On Failure Mode and Effect Analysis 

J Booth, P Sibolt, E Laugeman, B Cai, D Sjostrom, S Mutic, M Perez

AI for Error Detection @ AAPM | COMP 2020
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