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Causal Inference Framework

Y, = survival time when treatmentt = A

Yz = survival time when treatment t = B

x — patient’'s characteristics.

Treatment Effect
Effect = E, [(Y4-Yp)IX]

Effect = Ex [Ya| x| - Ex [ Yg] x]

Where the expectation is taken over all patients




Causal Inference from Training Data

Effect = Ex [Yal x] - Ex[Yg| x]

Problem: We never observe Y, and Y for a patient because they either
receive treatment A or B.

Approximation:

E.[Yy]| x] = E,[Y]x, t=A]

—" No hidden confounders
Population
\ (Y, Yp) Lt]|x

E.|[Ys| x] = E,[Y]x, t=8]




No Hidden Confounder

(YAI YB) 1 tlx

When does it break?

t = A is only given to very sick patients. Both Y,, Y are very small.

t =B is only given to healthy patients. Both Y,, Yy are big.

Hidden Confounder: patient selection mechanism




Hidden Confounder in Prediction Settings

Prediction = E [Y|x]
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Risks of Models built using correlation

P(Pneumonia)=0.024 SUPINE

PORTABLE

"

Patient with pneumonia: heatmap of CNN on left, original image on right

88% ranking. The CNN was learning the hospital type.

https://medium.com/@jrzech/what-are-radiological-deep-learning-models-actually-learning-f97a546c5b98



Risks of Models built using correlation

Example: Predicting Risk of dying of Pneumonia for In-hospital patients

Most accurate model trained: Multi-purpose neural net....

Rule Based Model

Asthmatic _ Lower Risk

» Harmful to patients
» High Risk of Liability

https://www.ncbi.nlm.nih.gov/pubmed/9040894



Risks of Models built using correlation

Example: Predicting Risk of stroke for Emergency Department patients

TABLE 1 — PrREDICTING AND MISPREDICTING

Stroke 30-day
mortality

Prior stroke 0.302 0.041
(0.012) (0.014)

Prior accidental injury 0.285 0.007
(0.095) (0.101)

Abnormal breast finding 0.224 0.162
(0.092) (0.110)

Cardiovascular disease history 0.218 —0.017
(0.029) (0.034)

Colon cancer screening 0.242 —0.475
(0.178) (0.222)

Acute sinusitis 0.220 0.056
(0.155) (0.166)

Notres: Logistic regression on demographics and prior diag-
noses in EHR data. Sample: 177,825 ED visits in 2010-2012
to a large academic hospital.

“Does Machine Learning Automate Moral Hazard and Error?” .American Economic Review: Papers & Proceedings 2017, 107(5): 476-480



Context is everything

THAT WAS SURPRISINGLY
EASY. HOW COME THE
ROBOTIC UPRISING LSED
SPEARS AND ROCKS
INSTEAD OF MISsSILES
AND LASERS 2

IF YOU LOOK TO
HISTORICAL DATA,,
THE VAST MAJORITY
OF BATTLE-WINNERS
VsSED PRE-MODERN
WEAPONRY.

\D

Thanks to machine-learning algorithms,
the robot apocalypse was short-lived.



Possible Solutions

Prediction = E [Y|x]

Interpretability

!
1. The model is interpretable in a global sense 1

i
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2. The model is interpretable locally.
Post-hoc justifications or explanations.

Variable Importance (salient map), Use a simpler model to
explain a more complex one, visualizations, etc



Possible Solutions

Post-hoc interpretations are rarely faith full

Salient Map

Fig. 2: Saliency does not explain anything except where the

network is looking.

Test image Evidence for animal being a Sberian husky Evdence for animal being a transverse fita

We have no idea why this image is labelled as either a dog or a musical
instrument when considering only saliency. The explanations look
essentially the same for both classes. Credit: Chaofen Chen, Duke

University

Full size image >

https://www.nature.com/articles/s42256-019-0048-x
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https://arxiv.org/pdf/1602.04938.pdf



Possible Solutions

Expert-Augmented Machine Learning

Train a state-of-the-art predictive model using RuleFit
This represents the best machine-learned model to
predict the outcome of interest given the training data

Extract human expert knowledge from panel of domain
experts using MediForest.com

This provides an automated way to extract problem-
specific human expert priors

Combine ML model with expert priors to build a robust,
efficient, and interpretable EAML model

This represents the merging of human expert knowledge with
a machine-learned model for best-of-both performance

AN



Expert-Augmented Machine Learning incorporates human expertise into ML models

1. Build Trees using 2. Convert Trees 3. Select Rules using 5. Compare empirical
Gradient Boosting to Rules LASSO and expert rule ranking
-L"f _H Rule Rank. Rank: ARank
9 t ot s ]
T A A A i -85
e I
4. Extract experts’ assessment of each rule 6. Build EAML model by
% on MediForest.com and rank combining rules & expert assessments
©
0 N
q) Age Pop: 65.04(16.01-102.34) A . , ,:)
3 C= argmmcz Ly, = CR(, :)]°
b7 ) i
@ Clinical Exams Pop: 4.00(1.00-5.00 K
by +4 Zf(ARankingk, STDEV)) |Gl
-o Labs & Studies Pop: 332 60{11.00-2376.19) Pap: 20.00(2.00-274.00
Q k=1
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ncases; krules  arxiv.org/abs/1903.09731
Experts assess a few simple rules instead of a vast number of individual cases | ML



Model- vs. Expert-derived variable importance

Model variable importance

based on correlational structure of data

Variable importance estimated from
clinicians’ responses based on their
causal & correlational knowledge
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EAML allows to train with less data

MIMIC2—trained model on MIMIC3 data

Rank difference
<5 (All Rules)

=3

<71

Mean AUC
070 072 074 076 0.78

200 400 800 1600 3200 6400
Training N Cases
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The Machine Learning Dogma

CHRIS ANDERSON SCIENCE 0s6.23.08 2: 00 PM

THE END OF THEORY: THE DATA
DELUGE MARES THE SCIENTIFIC
METHOD OBSOLETE

“..There is now a better way. Petabytes allow us to say: "Correlation is
enough." We can stop looking for models. We can analyze the data without
hypotheses about what it might show. We can throw the numbers into the
biggest computing clusters the world has ever seen and let statistical
algorithms find patterns where science cannot...”

https://www.wired.com/2008/06/pb-theory/



https://www.wired.com/2008/06/pb-theory/

EAML Project: The team

We are a multidisciplinary team with extensive clinical and quantitative expertise, and a shared goal of developing advanced
Machine Learning algorithms for accurate, interpretable, safe and fair clinical predictive modeling

In alphabetical order:

Andrew Auerbach, MD, MPH
University of California, San Francisco, Hospital Medicine

Elier Delgado, MSc
Innova Montreal, Web Application Engineering

Eric Eaton, PhD
University of Pennsylvania, Machine Learning,
Deep Learning

Jerome H. Friedman, PhD
Stanford University, Statistics, Machine Learning

Efstathios D. Gennatas, MBBS, PhD
University of Pennsylvania, Neuroscience,
Machine Learning, Biomedical Data Science

Yannet Interian, PhD
University of San Francisco, Data Science

Mark J. van der Laan, PhD
University of California, Berkeley, Biostatistics

Jose Marcio Luna, PhD
University of Pennsylvania, Radliation Oncology,
Machine Learning

Romain Pirracchio, MD, PhD
University of California, San Francisco, Anesthesia, Biostatistics

Lara G. Reichmann, PhD
University of San Francisco, Data Science

Charles B. Simone Il, MD
NY Proton, Radiation Oncology

Timothy D. Solberg, PhD
University of California, San Francisco, Radiation Oncology

Lyle H. Ungar, PhD
University of Pennsylvania, Machine Learning, Biomedical Data
Science, Natural Language Processing

Gilmer Valdes, PhD
University of California, San Francisco, Radiation Oncology,

Machine Learning AM |_



