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Introduction

In 1880, studying first optical-driven forms of [ gy
communications (photophone), Bell realized .

elastic waves (Michaels ; White)

that modulated light produces acoustic waves :‘;:::
Photophone (Bell) ime resolved ph TR
“... sounds can be produced by the action of a lF >, ? w,;“:mm:::x"m", uudhuxv::::uvm
variable light from substances of all kinds...”. == i H
Bell, Am. J. Sci. 118, 305 (1880) : l m-‘\) e
1880 1961 1971 1981 1987

This ,,radiophonic” found a new revival
with the laser developments in the
1960s, leading to the widely established .
biomedical field of opto/photoacoustics 7t s o)

revival of Bell Hm solids,
's effect in soli
use in biological materials, | in vivo study (Chen et al)
first thermoacoustic images from
phantoms (Olsen and Lin)



7/12/2020

LUDWIG-
MAXIMILIANS-

As historical “radiophonic” name suggests, acoustic emissions are not limited to light absorption

For ionizing radiation, the thermoacoustic
emission can be linked to dose deposition

Heat energy Localised
E EH energy
D=—= deposition
m (1 - kHD)m Thermal

Heat defect ~0...0.01 expansion

For E,, deposition on a shorter time scale than
volume/density change, temperature rise is Transducer

Heat energy density (E./V)

Acoustic wave

H
O'Cv

Mass density Specific heat capacity at constant volume

AT =

Temperature increase AT is linked to pressure generation via thermodynamics equations
Isothermal compressibility

0= Ap = poKrAp — poJAT

) . Isobaric expansion coefficient
Differential pressure

Speed of souznd C Specific heat capacity at constant pressure
P

V=
Y KrpoCy

2
p=L0p
CP

Dimensionless Griineinsen coefficient I”
indicating conversion efficiency of
deposited heat into pressure variation

.
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Acoustic wave propagation after radiation pulse in elastic and inertial medium

2

190
V2p(r,t) — v—szmp(r, t) =

C, ot

i}
H(r,t)

Where the heat energy deposition can be assumed instantaneous if heating pulse width t,, satisfies

Thermal confinement:

Ty < Typem (thermal relaxation time >> 100 ms) po(r 1) = o /drf po(r) s [r—r]
4mv2 Ot | | |r —r/| Vs

Stress confinement:
< 7 stress—

+00

Otherwise = p(r.,t) = /

o0

Beam diagnostics

di'ps(r,t —1)S(t')

— (stress relaxation time, = 0.7 ps for d = 1mm)

with S(t) temporal profile of heating source

Dosimetry

EXPERIMENTAL STUDIES OF THE ACOUSTIC SIGNATURE A photoacoustical radiation dosimeter

OF PROTON BEAMS TRAVERSING FLUID MEDIA*
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Fig. 3. Detector arrangement for the linac experiment.

6. Conclusions

We have demonstrated that an observable
acoustic signal is produced in a single transducer
by charged particle depositions 210" eV i1 fluid
media. The source of the signal is dominantly
thermal expansion Applications to beam monitor-
ing, heavy jon experiments, high energy physics
and cosmic ray physics are foresecable.
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The photoacoustical radiation dosimeter has the follow-
ing characteristies for diagnostic x-rav heams: (11 Tt has a
linear response with radiation intensity at a fixed radiation
quality. (2) It measures directly the energy fluence rate in the
radiation beam when a totally absorbing detector is used. (3)
It has an inverse frequency response for the case of an
opaque thermally thin sample.

(only possible for temporally varying sources!)

In-vivo treatment monitoring

Acoustic Pulse Generated in a Patient During
Treatment by Pulsed Proton Radiation Beam

Pulsed p beam -_—

Hydrophone

Hepatic cancer treatment
DISCUSSION

To utilize acoustic pulse generation for non-inva-
sive monitoring of three-dimensional dose distribu-
tions in a patient’s body, a two-dimensional array
of hydraphanes mnet he created 1171 Thic twa-
dimensional array of hydrophones may be applied
in the echo technique allowing the three-dimen-
sional dose distributions to be sunerimposed on the
anatomic structures.
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Ultrasonic detectors

* High sensitivity (e.g., in proton therapy ~mPa thermoacoustic pressure << ~100 kPa for US)

* Central frequency & bandwidth matched to application, depending on radiation quality and source
temporal properties (e.g., for proton therapy at synchrocyclotrons ~10-50 kHz vs ~MHz for US)

e Space requirement / material budget

Energy increase Frequency decrease
) g
>
a = 2
o
i\ =

Depth Time

Bottom electrode s
Substrate -

PZT and PZT composites PVDF (copolymers)

*Widely used in US imaging * Widely used as broadband * Emerging technologies in US imaging
* Bulk ceramic material receivers (hydrophones) * 3D microstructures with suspended
or epoxy/PZT composites * Thin films (usually ~28 um) membrane sealed under vacuum
* Narrow bandwidth * Flexible * Broad bandwidth
* Good sensitivity * Good sensitivity
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CMUT vs PZT for 20 MeV pulsed
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12 MHz CMUT a) lonoacoustic signals in time-domain

or "I-- Ideal detector j — CMUT detector — PZT detector
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Without ripple filter
Larger bandwidth and better sensitivity of CMUT* vs PZT:

* Increased SNR
* Independent of beam energy and probe position
* Bi-modality imaging (US / Radiation acoustics)

Detection of radiation acoustics signal, ideally with multiple transducers enables

g lr::::::::ser X T;Bﬂsdycer
* Image / dose reconstruction g : b

* Triangulation

~z |

Co-registration with US for

* Qverlay with underlying anatomy

* Compensation of the speed of sound variations
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Promising dosimeter for FLASH applications

Co-registration

20 MeV pulsed protons from tandem accelerator

Co-registration with optoacoustics (same 3D printed multimodal mouse
curved transducer) and US (linear array lonoacoustics/US co-registration with
transducer) in leg of sacrificed mouse single sensor in heterogenous media

Metatarsal

<— Moving mouse =

Polyimide Foil (PF)

Preliminary Exp. results

Phantom CT scan
(top: coronal & bottom: axial planes) Proton beam

See also TU-A-TRACK 3-0

ii " i i i i" . i . i i . i i“i Lascaud ... Parodi, talk at Small Animal Precision IGRT conference; i;
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Radiation acoustics for beam diagnostics, dosimetry and treatment monitoring envisioned since 1980s
Current renaissance for medical application mainly due to wider availability of

¢ Pulsed radiation sources (LINACs, synchrocyclotrons, laser-driven accelerators, ...)
* Improved sensor technologies and computer power

Several ongoing projects for pre-clinical and clinical applications, including promise for FLASH therapy

Next talks will review applications in

Photon therapy (S. Hickling) Proton therapy (S. Avery) X-ray imaging (L. Xiang)
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* |Issam El Naga for organizing this session
* LMU lonoacoustic team (J. Lascaud, H.P. Wieser, R. Kalunga, P.K. Dash, B. Wollant, W. Assmann) and
collaborators at UniBWM (J. Schauer, G. Dollinger) & TUM/IBMI (Y. Huang, V. Ntziachristos)

Munich Tandem Accelerator, Nov. 2019 See also PO-GeP-T-80, PO-GeP-T-463, TU-A-TRACK 3-0

Further reading
= T, - lonizing radiation-induced acoustics for radiotherapy and diagnostic
VL radiology applications
0l _ g v } AT Rk Med. Phys. 45 (7), July 2018
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