Democratizing real-time image guidance and verification: Approaches implemented on conventional linacs

Per Poulsen, Aarhus University Hospital, Denmark

Agenda

Introduction and scope

- Real-time IGRT methods
- Real-time dose reconstruction
- Conclusion

Stereotactic Body Radiation Therapy

SBRT:

- Involves high fraction doses with steep dose gradients
- Requires high accuracy at each fraction
- Challenged by intra-fraction motion

Stereotactic Body Radiation Therapy

<u>SBRT:</u>

- Involves high fraction doses with steep dose gradients
- Requires high accuracy at each fraction
- Challenged by intra-fraction motion

Real-time motion adaptation:

- Could ensure high accuracy at each fraction
- Requires real-time motion monitoring

Adopted from Keall et al. IJROBP 2018: 102: 922-31

Surveys: Use of in-room imaging

Simpson *et al.* Cancer 2010 Survey scope: 385 MDs in US

Surveys: Use of in-room imaging

Simpson *et al*. Cancer 2010 Survey scope: 385 MDs in US Batumalai *et al*. J Med Im Rad Onc 2017 Survey scope: 132 linacs in Australia

- Beam's eye view
- Relatively poor contrast
- Field-of-view and time-of-view dictated by treatment plan

MV imaging

Respiratory signal

- Beam's eye view
- Relatively poor contrast
- Field-of-view and time-of-view dictated by treatment plan
- Decoupled from treatment plan
- Gives imaging dose to patient
- Perpendicular to treatment field

Respiratory signal

MV imaging

kV imaging

- Beam's eye view
- Relatively poor contrast
- Field-of-view and time-of-view dictated by treatment plan
- Decoupled from treatment plan
- Gives imaging dose to patient
- Perpendicular to treatment field

Respiratory signal

kV imaging

MV imaging

- Higher frequency, lower latency
- Compatible with couch rotations
- Only external monitoring

Scope

Real-time 3D image-guidance methods:

- Based on kV, MV and respiratory signals
- Used clinically during treatment delivery with conventional linacs

Agenda

• Introduction and scope

Real-time IGRT methods

- Real-time dose reconstruction
- Conclusion

Four real-time IGRT methods implemented on conventional linacs

Four real-time IGRT methods implemented on conventional linacs

VMAT prostate SBRT with implanted markers:

Memorial Sloan Kettering Cancer Center

VMAT prostate SBRT with implanted markers:

- Memorial Sloan Kettering Cancer Center
- kV images triggered every 20° gantry angle

VMAT prostate SBRT with implanted markers:

- Memorial Sloan Kettering Cancer Center
- kV images triggered every 20° gantry angle
- Cine MV acquired continuously (9.5 Hz)
- Short-arc MV DTS (digital tomosynthesis, 3°) image reconstructed at kV image angles

VMAT prostate SBRT with implanted markers:

- Memorial Sloan Kettering Cancer Center
- kV images triggered every 20° gantry angle
- Cine MV acquired continuously (9.5 Hz)
- Short-arc MV DTS (digital tomosynthesis, 3°) image reconstructed at kV image angles
- 3D localization by MV-kV triangulation -

Marker visibility in MV DTS

- The markers are blocked by the MLC 60-80% of the time^(*)
- TPS script used for automatic VMAT plan manipulation
- Ensures visibility of at least one marker during the MV DTS
- Minimal degradation of plan quality

Original control points around DTS position

Original control points around DTS position Squeeze MU delivery to smaller angular span

Original control points around DTS position Squeeze MU delivery to smaller angular span Insert DTS arc with MLC opened around at least one marker. $MU_{DTS} = 1.5-2 MU$

A B D B*C T S S Adjust MU

Original control points around DTS position Squeeze MU delivery to smaller angular span

Insert DTS arc with MLC opened around at least one marker. $MU_{DTS} = 1.5-2 MU$ Adjust MU for MU_{DTS}

MV/kV imaging at Memorial Sloan Kettering Cancer Center

VMAT prostate SBRT implementation:

• Tracking templates created at 1° intervals

Thank you: Laura Happerset, Pengpeng Zhang, Margie Hunt, Ping Wang, Hai Pham

MV/kV imaging at Memorial Sloan Kettering Cancer Center

VMAT prostate SBRT implementation:

Tracking templates created at 1° intervals

- Registered with MV DTS and kV images by Sequence Reg software during treatment delivery
- Gate-off manually and correct if >1.5mm error in two consecutive images

Thank you: Laura Happerset, Pengpeng Zhang, Margie Hunt, Ping Wang, Hai Pham

MV/kV imaging at Memorial Sloan Kettering Cancer Center

VMAT prostate SBRT application:

- 594 5-fraction prostate cancer patients treated 2016-2020
- On average 1.2 interruptions per fraction
- Prostate motion >5 mm for 10% of patients
- Median treatment time 9 minutes (measured for subset of patients)

Thank you: Laura Happerset, Pengpeng Zhang, Margie Hunt, Ping Wang, Hai Pham

Four real-time IGRT methods implemented on conventional linacs

Sequential stereo

VMAT spine SBRT:

- VU University Medical Center, Amsterdam
- Continuous kV imaging (7 Hz)
- Match on spine with DRRs from planning CT

Sequential stereo

VMAT spine SBRT:

- VU University Medical Center, Amsterdam
- Continuous kV imaging (7 Hz)
- Match on spine with DRRs from planning CT
- Triangulation with 2-8 previous kV images
- Assume no motion along current ray line since the previous images

Sequential stereo

Selection of previous kV images for triangulation:

- acquired 14-72° prior to current image
- ray line <1mm from current ray line
- all 2-8 selected ray lines intersect in a small volume close to current ray line

Sequential stereo at VU University Medical Center, Amsterdam

VMAT spine SBRT implementation:

- Tracking templates (DRRs) created at 1° intervals
- Registered with streamed kV images during treatment delivery
- Gate-off manually and correct (by CBCT) if >1mm error in any direction

Sequential stereo at VU University Medical Center, Amsterdam

First clinical online real-time experiences^(*):

- 10 spine SBRT fractions of 3 patients:
- Images analyzed at ~1Hz (limited by computing speed)
- 2 beam interruptions in total due to >1mm errors

Sequential stereo at VU University Medical Center, Amsterdam

First clinical online real-time experiences^(*):

- 10 spine SBRT fractions of 3 patients:
- Images analyzed at ~1Hz (limited by computing speed)
- 2 beam interruptions in total due to >1mm errors

Further clinical experiences with real-time sequential stereo(**):

- ~40 spine SBRT
- DIBH lung SBRT
- Airway tracking (proximal bronchial tree) for central lung SBRT

(*) Hazelaar et al, IJROBP 2018 (**) W Verbakel, private communication

Four real-time IGRT methods implemented on conventional linacs

<u>KIM:</u>

• Continuous kV imaging (5-11 Hz)

<u>KIM:</u>

- Continuous kV imaging (5-11 Hz)
- Use all previous images in >120° angular span

Poulsen et al, IJROBP 2008, PMB 2008, 2009

<u>KIM:</u>

- Continuous kV imaging (5-11 Hz)
- Use all previous images in >120° angular span
- Find the 3D Gaussian Probability Density
 Function (PDF) that best describes the target motion (by maximum likelihood estimation)

Poulsen et al, IJROBP 2008, PMB 2008, 2009

<u>KIM:</u>

- Continuous kV imaging (5-11 Hz)
- Use all previous images in >120° angular span
- Find the 3D Gaussian Probability Density
 Function (PDF) that best describes the target motion (by maximum likelihood estimation)

Find the most likely target position along the ray line

Poulsen et al, IJROBP 2008, PMB 2008, 2009

Online real-time KIM

Online real-time application:

- Northern Sydney Cancer Center and four other Australian clinics
- Implemented on Varian Clinac, Varian TrueBeam, Elekta Synergy linacs
- 120 prostate cancer patients:
 - Gate-off and correct couch if >3mm error in >5s (~2000 fractions)
 - MLC tracking (49 fractions)
- 2 liver SBRT patients treated in breath-hold (7 fractions)

Keall et al, Med Phys 2015, IJROBP 2016, 2020. Hewson et al, Med Phys 2019

Prostate KIM at Northern Sydney Cancer Center

Video from Paul Keall, Doan Trang Nguyen, Jeremy Booth

Four real-time IGRT methods implemented on conventional linacs

COSMIK (Combined Optical and Sparse Monoscopic Imaging with KV x-rays)

COSMIK:

- Continuous monitoring of external marker block
- Sparse kV imaging of implanted markers (every 3 sec)
- Only for respiratory motion

COSMIK workflow (liver SBRT)

Pre-treatment setup CBCT:

- 1. Extract internal 3D marker trajectory using KIM
- 2. Establish correlation model between external and internal motion

CBCT projections (liver SBRT)

3D marker motion

COSMIK workflow (liver SBRT)

Pre-treatment setup CBCT:

- 1. Extract internal 3D marker trajectory using KIM
- 2. Establish correlation model between external and internal motion

During treatment delivery:

- Continuous external optical monitoring (20 Hz):
 - 3D internal marker motion estimated from correlation model
- Sparse kV imaging (0.33 Hz):
 - 3D internal marker position estimated with KIM
 - Update correlation model to account for tumor drift

Bertholet *et al*, PMB 2018

COSMIK at Aarhus University Hospital

Online real-time application:

- ~20 liver SBRT patients
- 1 lung cancer patient (markers in mediastinal lymph nodes)

• Real-time motion-including tumor dose reconstruction

Common characteristics of all four real-time IGRT methods

- Implemented clinically on conventional linacs
- Research software, not commercially available
- (Sub)-millimeter accuracy
- 3 of 4 methods currently rely on implanted markers

Summary of clinically implemented 3D real-time IGRT methods

	MV/kV	Sequential stereo	KIM	COSMIK
Principle	MV short-arc DTS Triangulation	Triangulation	Monoscopic imaging	Monoscopic imaging Breathing correlation
Tumor sites	Prostate	Spine	Prostate, liver	Liver, mediastinal LN
Treatment adaptation	Gate-off and adjust couch	Gate-off and adjust couch	Gate-off and adjust couch. MLC tracking	None (only real-time dose reconstruction)
Markers	Yes	No	Yes	Yes
Non-coplanar	No	No	No	Yes
Frequency	0.1-0.2 Hz (every 20°)	1 Hz (7Hz imaging)	5-11 Hz	20 Hz
Motion type	Small	Small (or periodic)	Any	Respiratory motion
Comments	 Low kV dose Prior imaging not needed Requires marker in MLC aperture 	 Requires prior images with same target position 	 Requires learning Requires stable motion PDF 	 Requires learning Low kV dose Continuous monitoring at Fx Low latency

Agenda

- Introduction
- Real-time IGRT methods

Real-time dose reconstruction

Conclusion

Real-time motion-including dose reconstruction

Motivation:

• Dose errors from motion >> Dose errors from machine QA

Dose reconstruction during treatment delivery:

- Enabled by real-time IGRT
- Important tool for real-time verification

Real-time motion-including dose reconstruction

DoseTracker in-house software:

- Very simple dose calculation
 - Water density
 - Flat patient surface
 - Same phantom scatter in all depths

Real-time motion-including dose reconstruction

DoseTracker in-house software:

- Very simple dose calculation
 - Water density
 - Flat patient surface
 - Same phantom scatter in all depths
-but flexible and fast
 - Any set of calculation points
 - ~100ms for 20,000 calculation points in a tumor

Includes motion

Ravkilde et al, PMB 2014, Med Phys 2018

Real-time dose reconstruction

First online application:

- Aarhus University Hospital
- 7 VMAT liver SBRT patients (10 fractions)
- Tumor position (COSMIK) and linac parameters streamed to DoseTracker
- Dose reconstructed in the PTV (1700-4500 calculation points, ~9 Hz)

Example: Dose reconstruction in a single point

Planned dose to liver tumor (95-107% shown)

AARHUS UNIVERSITY

Example: Dose reconstruction in a single point

DoseTracker (during treatment)

Planned dose to liver tumor (95-107% shown)

Example: Dose reconstruction in a single point

Planned and delivered dose distribution

Planned dose to liver tumor (95-107% shown)

Delivered dose (95-107% shown)

Motion-induced reduction in CTV D₉₅

Motion-induced reduction in CTV D₉₅

RMS error in real-time calculated ΔD_{95} for all 10 fractions: <u>1.3%-points</u>

Agenda

Introduction

• Conclusion

- Real-time IGRT methods
- Real-time dose reconstruction

Conclusions: Real-time IGRT on conventional linacs

- Technologies are being developed by researchers
- Used for real-time treatment adaptation or tumor dose reconstruction
- Potential for widespread use

Conclusions: Real-time IGRT on conventional linacs

- Technologies are being developed by researchers
- Used for real-time treatment adaptation or tumor dose reconstruction
- Potential for widespread use
- Broad adoption requires commercial solutions closely integrated with the clinical workflow
- MR-linacs may become driving a force for broader adoption
- IMRT, VMAT, CBCT: Fast clinical implementation of new technology
- Further development of markerless localization and image dose reduction may facilitate broader adoption of real-time IGRT.

Acknowledgements

Aarhus University Hospital:

- Thomas Ravkilde
- Simon Skouboe
- Esben Worm
- Morten Høyer
- Britta Weber

VU University Medical Center:

Wilko Verbakel

Bern University Hospital:

Jenny Bertholet

University of Sydney:

- Paul Keall
- Doan Trang Nguyen
- Jeremy Booth
- Ricky O'Brien

Memorial Sloan Kettering Cancer Center:

- Pengpeng Zhang,
- Laura Happersett
- Margie Hunt
- Ping Wang
- Hai Pham

Varian Medical Systems