Radiomics and Radiogenomics Modeling with Machine Learning
Issam El Naqa, PhD, DABR, FAAPM
Department of Machine Learning
Division of Quantitative Science
Moffitt Cancer Center
July 16th, 2020

Why 'omics outcomes modeling?

Population-based dose response

Too shallow!
The Pan-Omics of Oncology

Collect Specimen, Screen Specimen, Aggregate Data, Analyze Data

Outcomes Modeling Schemes

Clinical endpoint (phenotype)

Top-down

Integrative models

First principle mechanisms

Bottom-up

Biophysical interaction (genotype)

Integrative radiobiological modeling

TCP/NTCP are multi-factorial and depend on: radiation dose and patients' genomic (radiogenomics) and imaging (radiomics) characteristics before & during radiotherapy.
Radiogenomics NTCP Modeling: Dose + genomics

Rectal bleeding in prostate cancer

Coates et al., RO, 2015

- CNV V10, V20, D50 and XRCC1 CNV

Panomics NTCP Modeling: Dose + biologics + imaging

ALBI changes in liver cancer

El Naqa et al, IJROBP, 2018 (CME article)

- ALBI changes in liver cancer

Outcome modeling by Machine learning (ML)

- **Generative models**
 - Model class-conditional PDFs and prior probabilities (Bayesian networks, Markov models)
 - To predict you need to know the system

- **Discriminant models**
 - Directly estimate posterior probabilities (logistic regression, neural networks, CNN, random forests, SVM)
 - Predict without knowing the system
Multi-Objective Generative Models

A BN can be used to model multiple outcomes simultaneously, which provides additional opportunities for finding appropriate treatment plans to solve the trade-off between competing risks.

Luo et al, Med Phys, 2018 (Editor's Choice)

Human-in-the loop: Pre/During Treatment BNs for LC and RP2 Prediction

Prediction of tumor local in lung cancer using DNN

Composite neural network architecture
Deep learning architectures for joint actuarial prediction of LC and RP2

- Cui et al. AAPM 2020

How to build an ML/DL model?

- Depending on the level of evidence
 - Selection appropriate learning algorithms
 - Validation and evaluation (TRIPOD criteria)
 - Internally (cross-validation schemes)
 - Externally (independent datasets)
 - Provide interpretation of machine learning prediction

ML validation

- Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)

Conclusions

- Radiomics and radiogenomics offer new opportunities to develop better TCP/NTCP models and for personalizing radiotherapy.
- Machine/deep learning techniques can improve feature selection and statistical learning in radiomics/radiogenomics analytics and modeling radiotherapy outcomes.
- Main challenges for radiomics/radiogenomics modeling:
 - Harmonization and optimization of data integration methods.
 - Uncertainties in data and model building schemes.
 - Proper validation (TRIPOD criteria) and robustness for clinical decision support.
 - Better interpretation of radiomics/radiogenomics models is still lagging.
THANK YOU!

James Balter, PhD
Yue Cao, PhD
Paul Carson, PhD
Kyle Cuneo, MD
Joseph Deasy, PhD
Yuni Dewaraja, PhD
Ivo Dinov, PhD
Robert Gillies, PhD
Mike Green, MD, PhD
Judy Jin, PhD
Shruti Jolly, MD
Theodore Lawrence, MD PhD
Marc Kessler, PhD
Daniel L. McShan, PhD
Martha M. Matuszak, PhD
Chuck Mayo, PhD
Michelle Mierzwa, MD
Jean Moran, PhD
Eduardo Moros, PhD
Morand Piert, MD
Dipankar Ray, PhD
Al Rehemtulla, PhD
Ben Rosen, PhD
Jan Seuntjens, PhD
Randall K. Ten Haken, PhD
Xueding Wang, PhD
Noora Ba Sunbul
James Coates, PhD
Susan Cui, PhD
Jamaline Jamaluddin
Yi Luo, PhD
Dipesh Niraula, PhD
Alie Oraiagat, PhD
Julia Pakala
Wenbo Sun, PhD
Huan-Hsin Tseng, PhD
Lise Wei, PhD
Wei Zheng, PhD
• Noora Ba Sunbul
• James Coates, PhD
• Susan Cui, PhD
• Jamaline Jamaluddin
• Yi Luo, PhD
• Dipesh Niraula, PhD
• Alie Oraiagat, PhD
• Julia Pakala
• Wenbo Sun, PhD
• Huan-Hsin Tseng, PhD
• Lise Wei, PhD
• Wei Zheng, PhD