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Outline

• Radiomics for outcomes prediction
• Repeatability and reproducibility
• Radiomics and head & neck cancer – benchmark study
• Deep learning radiomics
• Extension to multiple modalities and clinical data
• Summary

AAPM July 2020

3



7/16/20

2

®Hypothesis 1: The genomic heterogeneity of aggressive tumours translates into
heterogeneous characteristics at the anatomical scale.

®Hypothesis 2: Intratumoral heterogeneity at the anatomical scale can be captured
using quantitative image analysis.

Adapted from(Lambin P et al., Eur J Cancer 48, 2012)

• Necrosis
• Oxygenation levels
• Blood vasculature
• etc.

Tumour
sub-region
differences

Radiomics = use of “texture” information in images 

Feature = a 
descriptor of an 
image (e.g. of 
tumor or normal 
tissue regions) 
such as parameters 
derived from 
image intensity, 
texture, shape, etc. 
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Energy: 0.06
Contrast: 0.73
Entropy: 3.09

Homogeneity: 0.74
Correlation: 0.87

Variance: 0.28

Energy: 0.03
Contrast: 1.61
Entropy: 3.57

Homogeneity: 0.64
Correlation: 0.80

Variance: 0.39

Patient did not develop metsPatient developed mets

Texture analysis is concerned with the spatial distribution 
(patterns) of gray level variations within an image.

Example of GLCM textures

Vallières et al 2017

GLCM = grey level co-occurrence matrix
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The radiomics world

Lambin P et al., Eur J Cancer 48, 2012

Outcome prediction

Machine Learning Model

Training on a large data set

New patient
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Soft tissue sarcoma – lung metastases 
prediction model
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Vallieres et al 2015 Phys. Med. Biol. 60: 5471
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Vallieres et al 2018 PHIRO 6, 53–60
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Repeatability and reproducibility

• Repeatability = measure of precision under identical or near-identical 
conditions and acquisition parameters 
• evaluated by ‘‘test-retest” analysis 
• 31 CT datasets Reference Image Database to Evaluate Therapy Response 

(RIDER) 
• Reproducibility = better to assess overall robustness
• Imaging system
• Imaging parameters
• Reconstruction
• ROI delineation
• Feature extraction and feature qualification
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à Imaging parameters that affect edge sharpness significantly affect radiomic features 

à CT scanner variability is large compared to the interpatient variability in the NSCLC tumors for some 
features.
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à Imaging parameters that affect edge sharpness significantly affect radiomic features 

à CT scanner variability is large compared to the interpatient variability in the NSCLC tumors for some 
features.
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à 2/3 of the radiomic features depend on the exposure setting of the scanner! Models can 
correct for this in a large part. Scanner SNR correction will result in more reliable radiomics 
predictions in NSCLC.
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Image biomarker 
standardization initiative 
(IBSI)

Zwanenburg A, Leger S, Vallières M & Löck S. 
Image biomarker standardisation initiative. 
arXiv preprint, arXiv:1612.07003 (2016).

Independent international collaboration working towards 
standardizing the extraction of biomarkers from imaging 
for the purpose of high-throughput quantitative image 
analysis
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• open software packages and 
standardized implementations (e.g., 
IBSI) for texture features should be 
used to ensure reproducibility

• models and features should be tested 
to determine added prognostic and 
predictive accuracy compared to 
accepted clinical factors

• features should be tested for 
underlying dependencies using 
statistical analysis or by perturbing the 
data in controlled ways

• image quality (e.g. artifacts) should be 
assessed in a preprocessing step and 
contouring information included
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Head & neck radiomics

Vallières et al 2017AAPM July 2020

Benchmark study
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Example of deep learning radiomics model

Diamant et al 2019AAPM July 2020
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Deep learning radiomics in 
head & neck cancer outcome

(a ) (b ) (c)

Distant
metastasis

No distant
metastasis

• Head & neck patient data 

Raw input im
age

Gradient class

activatio
n m

ap of

convolutio
nal block

Merged im
age

a b

c d

Diamant et al, 2019AAPM July 2020
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CNN filter activation and texture features
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Diamant, A. et al (2019)
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Performance

Diamant, A. et al (2019)
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Diamant et al 2020

Extension to multiple imaging modalities
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Diamant et al 2020 (preliminary)
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Overall survival

Model trained with all
data present; effect of 
missing data tested.

OS OS

OSOS
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Diamant et al 2020 (preliminary)
AAPM July 2020

Overall survival

Model trained with only 
the data set present on 
the x-axis

26

Summary

• We are only in the early stages of outcome modeling using these 
newer techniques, and far away from clinical implementation – data 
federation
• We emphasized standardization in the radiomics steps with the goal 

of better reproducibility
• We may build successful models but we have to recognize that there 

is a large variability of factors influencing clinical outcomes. We have 
to be careful with early generalizations.
• Outcome modeling hinges on the quality of the data. Each patient 

experience must be carefully documented and stored to contribute to 
accurate models  for future patients’ outcome.
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MEDomics
medomics.ai

Synergy between medical image analysis, machine 
learning, deep learning, natural language processing and 

distributed learning

https://youtu.be/2030Pdgm3_4
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