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Introduction

Recent developments in MRI have substantially improved its

performance

Anatomic

Making it a potentially powerful tool for not only diagnosis but

also therapy.

Angiographic Physiologic Interventions
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Introduction
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T1 mapping T2 mapping FA map 

Dardzinski,et al, Pediatric Imaging 2015

Zhu,et al, MRM 2005

Chang,et al, TCRT 2014

Ktrans map FB map

Wang,et al, TCRT 2016

Wang,et al, MRM 2015

Various MR quantitative functional techniques 

including, but not limited to, DWI, DTI, MRS 

and DCE/DSC imaging, have been investigated 

to assess therapeutic outcome in radiotherapy
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Diffusion Imaging

Diffusion imaging techniques are used to determine the rate and

principle direction of thermal (Brownian) motion of protons

Hamstra,et al, JCO 2007

Diffusion affected by 

intra-cellular and extra-

cellular architecture
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Diffusion-Weighting Gradients

Tissue A Tissue B

Restricted Diffusion 

Bright Contrast

Freely Diffusion 

Dark Contrast
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Diffusion-Weighting Gradients

Diffusion-weighting gradient is often referred to as bipolar gradient

(or Stejskal-Tanner gradient)

Spin Echo: 90o RF, first gradient lobe, 180o RF, second gradient lobe

Stejskal, Tanner. J Chem Physics, 1965
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Diffusion-Weighting Gradients

b-factor for rectangular pulse of spin echo

𝑏 = 𝛾2𝐺2𝛿2(∆ − 𝛿/3)
𝑆

𝑆0
= exp(−𝑏𝐷)
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High b-Value Diffusion

Zhou, et al. MRM, 2010
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Diffusion Tensor Imaging

Diffusion is truly a three-dimensional process. Hence, molecular

mobility in tissues may not be the same in all directions.

➢ Diffusion can be described by a tensor, with min. 7 acquisitions.

➢ The diffusion tensor can be an ellipsoidal approximation

ന𝐷 =
𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

ന𝐷 = ത𝐸−1
𝝀𝟏 𝟎 𝟎
𝟎 𝝀𝟐 𝟎
𝟎 𝟎 𝝀𝟑

ത𝐸

D Le Bihan, et al. JMRI, 2001
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Diffusion Tensor Imaging

Diffusion is truly a three-dimensional process. Hence, molecular

mobility in tissues may not be the same in all directions.

➢ Diffusion can be described by a tensor, with min. 7 acquisitions.

D Le Bihan, et al. JMRI, 2001

Y. Masutani et al. EJR, 2003

Mean Diffusivity <D>Map 

FA map Fiber Tractography
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Angiogenesis

➢ Angiogenesis is a complex process critical to the growth and

metastasis of malignant tumors.

➢ Tumor growth beyond 1–2 mm in solid tissues cannot occur

without vascular support.

➢ Early detection of such changes would allow assessment of

the therapeutic outcome of anti-vascular agents and aid in

diagnosis.

J. Folkman Eur J Cancer 1996
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Detection of Angiogenesis

Current methods of assessing angiogenesis can be considered as

either direct or indirect.

➢ direct method: microvascular density counting with 

immunostaining (most frequently used) 

- invasive and no functional information

➢ indirect method: indirect biomarkers of angiogenesis detected

by imaging such as MRI using contrast agent (e.g. Gd)

- Non-invasive and provide functional information

J.A. d’Arcy  RadioGraphics 2006
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DCE and DSC MRI

J.A. d’Arcy  RadioGraphics 2006 19



DCE-MRI

M.V. Knopp,et al.  MCT, 2003
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DCE-MRI : 

Pharmacokinetic Model 

Plasma

Cp, 𝝂p

EES

CEES, 𝝂e

Endothelium

Kin
trans

Plasma Flow

Kout
trans

P.S. Tofts, et al. JMRI, 1997
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Pharmacokinetic Model 

Plasma

Cp, 𝝂p

EES

CEES, 𝝂e

Endothelium

Kin
trans

Plasma Flow

Kout
trans

𝐶 𝑡 = 𝐶𝐸𝐸𝑆 𝑡 + 𝝂𝑝𝐶𝑝(𝑡)

P.S. Tofts, et al. JMRI, 1997

𝐶 𝑡 = 𝐾𝑖𝑛𝑡𝑟𝑎𝑛𝑠 0׬
𝑡
𝐶𝑝(𝑡′)𝑒−𝐾𝑜𝑢𝑡𝑡𝑟

𝑎𝑛/𝝂𝑒 (𝑡−𝑡
′)d𝑡′ +

𝝂𝑝𝐶𝑝(𝑡)

C(t) = [Gd] in tissue measured

22



Pharmacokinetic Model 

Plasma

Cp, 𝝂p

EES

CEES, 𝝂e

Endothelium

Ktrans

kep =Ktrans/𝝂𝑒

Plasma Flow

𝐶 𝑡 = 𝐾𝑡𝑟𝑎𝑛𝑠 0׬
𝑡
𝐶𝑝(𝑡′)𝑒−𝑘𝑒𝑝(𝑡−𝑡

′)d𝑡′

𝐾𝑖𝑛
𝑇𝑟𝑎𝑛𝑠 = 𝐾𝑜𝑢𝑡

𝑇𝑟𝑎𝑛𝑠Assume small plasma volume  𝝂p = 0 and

𝐶 𝑡 = 𝐾𝑖𝑛𝑡𝑟𝑎𝑛𝑠 0׬
𝑡
𝐶𝑝(𝑡′)𝑒−𝐾𝑜𝑢𝑡𝑡𝑟

𝑎𝑛/𝝂𝑒 (𝑡−𝑡
′)d𝑡′ +

𝝂𝑝𝐶𝑝(𝑡)
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DCE-MRI Analysis

➢ Qualitative

• Uptake curves

➢ Semi-quantitative

•  Area under the curve (AUC)

➢ Quantitative

• Tracer-kinetic modeling (𝐾𝑡𝑟𝑎𝑛𝑠, 𝑉𝐵, 𝐹𝐵, etc)

24

T1W AUC

Ktrans map FB mapWang,et al, TCRT 2016

A.D. King, et al, PLOS, 2015

M.V. Knopp,et al.  MCT, 2003
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Assessment using Diffusion 

MRI –Brian tumors
➢ For malignant glioma, the radiologic response (RR) method using

3D measurements of tumor volume - association with survival.

➢ One disadvantage of volume measures is the time for changes to

occur, with 8 to 10 weeks necessary to assess response.

➢ Diffusion imaging (DTI) could be used to investigate the feasibility

of detection of early response…

➢ A brain study of 60 patients with high-grade glioma, with gross tumor

treated to a final median dose of 70 Gy in 6-7 weeks. Diffusion

imaging with a single-shot, spin-echo, echo-planar imaging (EPI)

sequence. Scanned 1 week before and 1, 3, and 10 weeks after the

start of radiation.

26
D. A. Hamstra, JCO, 2008



Assessment using Diffusion 

MRI –Brian tumors

27
D. A. Hamstra, JCO, 2008

Functional diffusion map (fDM): Red –ADC IncreasedEarly Assessed; Better OS 



Assessment using Diffusion 

MRI –Brian tumors
➢ For malignant glioma, the radiologic response (RR) method using

3D measurements of tumor volume - association with survival.

➢ One disadvantage of volume measures is the time for changes to

occur, with 8 to 10 weeks necessary to assess response.

➢ Increased diffusion of water molecules (measured as an increase in

the apparent diffusion coefficient (ADC)) occurs shortly after a

successful treatment, and correlates with the breakdown of cellular

membranes and reduction in cell density that both precede changes

in tumor size.

28
D. A. Hamstra, JCO, 2008
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Assessment using Diffusion 

MRI –White Matter Damage
➢ Stereotactic radiosurgery (SRS) has been an effective treatment for

the management of brain metastases, acoustic neuromas and other

brain diseases.

➢ Few data are available regarding radiation induced white matter

(WM) damage by SRS.

➢ Diffusion tensor imaging (DTI) was used to investigate WM

changes following SRS …

➢ A study of 15 patients with recurrent unifocal malignant gliomas,

treated with concurrent SRS/BVZ treatment, with radiation dose of

from 18Gy to 25Gy. Scanned 1-4 days prior to SRS and 7 days and

two months after SRS treatment

30
Chang Z, et al., Technol Cancer Res Treat, 2014.



Assessment using Diffusion 

MRI –White Matter Damage

Representative Patient

Neural fibers 

decline

31

1-week after SRS

Before SRS

2-month after SRS

Chang Z, et al., Technol 

Cancer Res Treat, 2014.



Assessment using Diffusion 

MRI –White Matter Damage

Non-irradiated 

contralateral area
Irradiated area

32

Chang Z, et al., Technol 

Cancer Res Treat, 2014.

FA decreased significantly by 6.8% (p<0.01) with 

nearly 40% (p = 0.02) decline of NF after two months 

of SRS in the VOIs of white matter receiving ≥ 5Gy



Assessment using Diffusion 

MRI –White Matter Damage
➢ Stereotactic radiosurgery (SRS) has been an effective treatment for

the management of brain metastases, acoustic neuromas and other

brain diseases.

➢ Few data are available regarding radiation induced white matter

(WM) damage by SRS.

➢ As compared with non-irradiated contralateral area, considerable

decrease in fractional anisotropy (FA) and tracked neural fibers in

the irradiated white matter volumes after 1-week of SRS, with

further decrease after 2-month after SRS.

33
Chang Z, et al., Technol Cancer Res Treat, 2014.
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➢ Stereotactic radiosurgery (SRS) has been an effective treatment for

the management of brain metastases, acoustic neuromas and other

brain diseases.

➢ A study of 12 patients with recurrent unifocal malignant gliomas,

each up to 5 cm in maximum dimension.

➢ Patients were treated with concurrent SRS/BVZ treatment, with

radiation dose of from 18Gy to 25Gy. Scanned 1-4 days prior to

SRS and 7 days and two months after SRS treatment.

➢ Diffusion imaging and DCE-MRI were used to investigate for

possible OS prediction.

35

Assessment using DCE-MRI 

–Brian SRS

Wang, et al., J. Radiosurgery 

and SBRT, 2018.



Wang, et al., J. Radiosurgery 

and SBRT, 2018.
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Results: Tumor Response

Functional MR Parametric Maps 

from a selected patient. 

White arrows indicate the PTV location
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Results: Tumor Response
Summary of functional parameter statistics. 

Wang, et al., J. Radiosurgery and SBRT, 2018.
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Radiomics

Wang, et al., J. Radiosurgery and SBRT, 2018.
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Results: Radiomics
Normalized changes of radiomics features in different ROIs

Wang, et al., J. Radiosurgery and SBRT, 2018.

rad
io

m
ics

featu
res

6 different image modalities in  4 different ROIs



OS Prediction

➢ Selected radiomics features with high coefficient r values in

correlation tests were investigated with support vector regression

(SVR) to predict OS with leave-one-out cross validation.

➢ When using a selected group of 5 features’ normalized changes

(Ktrans: C-6 in PTV; ADC: C-7 in PTV; T1w: F-2 and C-7 in PTV;

C-7 in GTV) in the 2nd post-treatment scan for outcome prediction,

9 out of 12 patients’ OS time were accurately predicted (Mean

absolute error = 1.47 mo, RMSE = 2.10 mo).

40

Wang, et al., J. Radiosurgery and SBRT, 2018.
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Assessment using DCE-MRI–

Neurocognitive Dysfunction
➢ Radiation therapy (RT) is a major treatment modality for malignant

and benign brain tumors.

➢ The major limiting factor in its use is neurotoxicity, often as late

neurocognitive dysfunctions.

➢ Important to identify biomarkers (e.g. cerebral vascular injury) for

early assessment and prediction of late neurotoxicity…

➢ A study of 10 patients with low-grade glioma or benign tumor,

treated with 3D conformal RT, with radiation dose of 50.4−59.4

Gy in 1.8 Gy fractions. 1−2 weeks prior to RT, at weeks 2−3 and

weeks 5−6 during the course of RT, and at 1 month and 6 months

following the completion of RT.

42
Cao, et al., Clin Cancer Res. 2009



Assessment using DCE-MRI–

Neurocognitive Dysfunction

43Cao, et al., Clin Cancer Res. 2009
Changes in vascular volumes (Vp) & blood-

brain permeability (Ktrans) versus doses 



Assessment using DCE-MRI–

Neurocognitive Dysfunction

44Cao, et al., Clin Cancer Res. 2009
Learning scores decline as 

changes in Ktrasn and Vp



Challenges and Limitations

Various technical challenges and limits encountered:

➢ Artifacts: distortions, motion artifacts …. 

➢ Long data processing for PK analysis in DCE-MRI

➢ Relatively low temporal resolution in DCE-MRI

➢ ……
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Distortion Correction for 

Diffusion MRI using EPI
➢ Spatial and intensity distortion in EPI images due to inhomogeneous 

static magnetic fields is a well-known phenomenon

- Spatial distortion in SE and GRE EPI, and additionally signal  

loss in the latter, have restricted its use 

- Distortion is most pronounced in PE direction in EPI

- Depends on applied magnetic field, magnetic susceptibilities     

within the subject, geometry of the subject, and its orientation 

48
Holland et al., Neuroimage. 2010



Distortion Correction for 

Diffusion MRI using EPI
➢ Distortions in EPI-based Diffusion MRI:  Eddy‐currents and EPI distortions

49Irfanoglu et al., MRM. 2019

affect DWIs

affect DWIs, 

including the 

b = 0 s/mm2



Distortion Correction for 

Diffusion MRI using EPI

50Irfanoglu et al., MRM. 2019

FA increase by 113% due to 

distortion

TR (trace) increase by 69% 

due to distortion



Distortion Correction for 

Diffusion MRI using EPI
➢ Spatial and intensity distortion in EPI images due to inhomogeneous 

static magnetic fields is a well-known phenomenon

- Spatial distortion in SE and GRE EPI, and additionally signal  

loss in the latter

- Distortion is most pronounced in PE direction in EPI

- Depends on applied magnetic field, magnetic susceptibilities     

within the subject, geometry of the subject, and its orientation 

➢ Various distortion correction methods have been proposed: the 

unwarping methods, PLACE, the reversed gradient methods

51

Holland et al., Neuroimage. 2010



Distortion Correction for 

Diffusion MRI using EPI
➢ The reversed gradient method makes use of the fact that the distortion 

behaves “symmetrically” when reversing the phase encoding direction

52Teruel et al., MRM. 2015



Distortion Correction for 

Diffusion MRI using EPI
➢ Evaluating the correction strategies is challenging

➢ Computer simulation, 

➢ Hardware phantoms, 

➢ Undistorted image (e.g. T1Wimage)

➢ Framework based on the reversed PE and gradient methods

53Irfanoglu et al., MRM. 2019

A perfect distortion correction method to the two datasets with opposite 

diffusion encoding directions or PE directions would produce identical 

images. 

AP PE PA PE



Distortion Correction for 

Diffusion MRI using EPI
➢ Evaluating the correction strategies is challenging

➢ Framework based on the reversed gradient methods

54

Irfanoglu et al., MRM. 2019

Froeling et al., MRM. 2017
Calculating the variability map as a 

measure of difference of images

AP

PA

AP-corrected

PA-corrected

Prior to Correction Post Correction

variability maps, 

considered as “residue” 

after correction
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Efficient Calc. for DCE-MRI

➢ PK parameters in DCE-MRI analysis are commonly calculated 

with nonlinear least-squares (NLSQ) methods or linear least-

squares method using the integral form of the PK model (ILLSQ) 

- NLSQ methods require intensive computation and may lead to 

erroneous results at the local optima 

- The computation time required for ILLSQ rapidly increases as 

temporal resolution of image acquisition increases 

➢ Another efficient method for calculating pharmacokinetic (PK) 

parameters developed for DCE-MRI studies

56



Efficient Calc. for DCE-MRI

➢ To improve the computational efficiency, a new method for 

calculating PK parameters for DCE-MRI analysis was proposed. 

➢ In this method, curve fitting based on linear least-squares method 

was applied to the derivative expression of the PK model with a 

KZ low-pass filter  (abbreviated as the DLLSQ method).

𝑑𝐶𝑡 𝑡

𝑑𝑡
= (𝐾𝑡𝑟𝑎𝑛𝑠+𝑣𝑝 ∙ 𝑘𝑒𝑝) ∙ 𝐶𝑝 𝑡 − 𝑘𝑒𝑝 ∙ 𝐶𝑡 𝑡 + 𝑣𝑝 ∙

𝑑𝐶𝑝 𝑡

𝑑𝑡

𝐶𝑡 𝑡 = 𝐾𝑡𝑟𝑎𝑛𝑠න
0

𝑡

𝐶𝑝(𝑢) ∙ 𝑒
−𝑘𝑒𝑝(𝑡−𝑢) 𝑑𝑢 + 𝑣𝑝 ∙ 𝐶𝑝(𝑡)

57



Ktrans

kep

vp

2D simulation

(a) True values; 

(b) DLLSQ results; 

(c) ILLSQ results; 

(d) NLSQ results;

(e) difference map of  

DLLSQ results; 

(f) difference map of 

ILLSQ results; 

(g) difference map of 

NLSQ results
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Ktrans

kep

vp

In vivo study 

DLLSQ method ILLSQ method NLSQ method 
59



Efficient Calc. for DCE-MRI

Δt(s) 0.1 0.5 1 2 3 4 5 10 15 20

DLLSQ 15.46 2.21 1.28 0.98 0.92 0.87 0.84 0.77 0.76 0.76

ILLSQ 7.6x102 32.90 9.31 3.21 2.06 1.63 1.41 1.09 1.02 1.00

NLSQ
2.86 

x104

1.89 

x103
5.86x102 1.52x102 82.53 52.17 31.96 13.04 13.86 12.40

In the simulation and in vivo studies, the calculated parameters using the proposed method

were comparable to those using the existing methods with improved efficiency.

When analyzed within certain parameter intensity ranges at ∆t=1s, the proposed method

was more accurate than the current methods with improved efficiency by a factor up to 478.

C.Wang, FF. Yin, Z.Chang, MRM, 2015 60



Efficient Calc. for DCE-MRI

using Deep Learning
➢ Machine learning (ML) based approach to directly estimate the PK 

parameters from the acquired DCE-MRI image-time series

61Ulas, et al,, Front Neurol. 2019



Efficient Calc. for DCE-MRI

using Deep Learning
➢ Machine learning (ML) based approach to directly estimate the PK 

parameters from the acquired DCE-MRI image-time series

62Ulas, et al,, Front Neurol. 2019Deep Learning Architecture 

Over160 million training samples, i.e., number of total voxels, out of 15 patients



Efficient Calc. for DCE-MRI

using Deep Learning
➢ More robust and faster than conventional model fitting

63Ulas, et al,, Front Neurol. 2019

SSIM:0.998 

SSIM: 0.961 

A few seconds on a GPU machine 



Challenges and Limitations

Various technical challenges and limits encountered:
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Fast Imaging for DCE-MRI

High temporal resolution is desirable in DCE-MRI

➢ To ensure the accuracy of pharmacokinetics (PK) analysis

Reliable AIF information derivation demands 1 s or faster

➢ To achieve feasible perfusion measurement 

Requires high temporal resolution to capture vascular phase 

of contrast medium delivery

65



Fast Imaging for DCE-MRI

To accelerate MRI acquisition, various fast imaging methods has been 

proposed 

➢ Physically manipulate spin dynamics to use available 

magnetization more efficiently

EPI, Spiral, RARE, GRASE, …

➢ Sparsely sample k-space and reconstruct a complete image through 

a non-standard reconstruction

keyhole, SENSE, GRAPA, BLAST, SPEED, CS, TV,…

66



Fast Imaging for DCE-MRI

➢ Sparse radial sampled data can be reconstructed by using total 

variation (TV)/total generalized variation (TGV)

➢ The concept is based on the first order/second order derivative 

calculation was commonly adopted in the constrained image 

reconstruction as to minimize the gradient of the reconstructed 

image 

➢ To explore the feasibility of fast DCE-MRI with TGV for tracer-

kinetic (TK) studies

67



Fast Imaging for DCE-MRI

Original post-injection image (a) and reconstructed image with 32 radial k-space lines(b). The

red contour indicates ROI that contains the tumor

Original Reconstructed (x4)

68



Fast Imaging for DCE-MRI

Original Reconstructed (x4) Difference

Ktrans

FB

VB

Permeability

Perfusion

Perfusion

69

Wang CH, et al., TCRT, 2016



Fast TK Mapping

➢ These techniques as “indirect” methods, because the anatomical 

image series are reconstructed first, followed by a separate step for 

TK parameter fitting

➢ 1) Spatial TK parameter maps have much lower 

dimensionality than those of dynamic image series (two to 

four parameters, compared to 50–100 time points, per voxel), 

and 

➢ 2) TK model-based reconstruction directly exploits what is 

known about contrast agent kinetics

➢ “Direct” estimation of TK parameters from undersampled (k,t)-

space data or undersampled DCE-MRI data

70



Fast TK Mapping

➢ These techniques as “indirect” methods, because the anatomical 

image series are reconstructed first, followed by a separate step for 

TK parameter fitting

➢ “Direct” estimation of TK parameters from undersampled (k,t)-

space data or undersampled DCE-MRI data

71



Fast TK Mapping

72

DCE-MRI forward model flow chart: 

Conversion from TK parameter maps to undersampled (k,t)-space. 

Patlak model is used to convert TK parameter maps to contrast concentration

Y Guo, et al., MRM, 2017

Direct Method 



Fast TK Mapping

73

Retrospective evaluation of direct and indirect 

reconstruction of Ktrans and vp maps.
Y Guo, et al., MRM, 2017

Ktrans map by Direct 

Method with the sparsity 

constraint

Undersampling rate: 

R = 100

Only Patlak model used;

Use of more-sophisticated 

models (eg, extended 

Tofts model ) possibly 

nonconvex, to be further 

investigated.

-Long computation time



Fast TK Mapping

➢ These techniques as “indirect” methods, because the anatomical 

image series are reconstructed first, followed by a separate step for 

TK parameter fitting

➢ “Direct” estimation of TK parameters from undersampled (k,t)-

space data or undersampled DCE-MRI data

74



Fast TK Mapping using 

Deep Learning

75

Ulas, et al., MICCAI 2018

Deep Learning Architecture 



Fast TK Mapping using 

Deep Learning

76

Ulas, et al., MICCAI 2018

Y Guo, et al., MRM, 2017
3D volume takes ~ 1.5 s for DL while the 

model-based direct method requires ~95 min 

Undersampling rate: 

R = 10
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Challenges and future directions

➢ Reproducibility of quantitative data

To achieve this goal, standardized acquisition protocols, data  

analysis and assessment shall be promoted

➢ Interpretation of biomarker

Physiologic meanings need to be fully examined towards the future 

clinical application

➢ Image quality improvement

Potentially affect the quantitative assessment outcome

➢ Novel image analysis methodology

Morphological information image texture features, deep machine learning

Z.Chang, et al. WJR, 2015
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