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Introduction

Recent developments in MRI have substantially improved its
performance

Anatomic m) Angiographic m) Physiologic m) Interventions

Making it a potentially powerful tool for not only diagnosis but
also therapy.

2155



Introduction

NECNEEEEEC 3
¢
be Pl O
L
-
"u :.
[

T1 mapping T2 mapping FA map Kras map  Fg map

Zhu,et al, MRM 2005
Chang,et al, TCRT 2014
Wang,et al, MRM 2015

Wang,et al, TCRT 2016
Dardzinski,et al, Pediatric Imaging 2015 15

Various MR guantitative functional techniques
including, but not limited to, DWI, DTI, MRS
and DCE/DSC imaging, have been investigated
to assess therapeutic outcome in radiotherapy
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Diffusion Imaging

Diffusion imaging techniques are used to determine the rate and
principle direction of thermal (Brownian) motion of protons
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Diffusion-Weighting Gradients

Tissue A Tissue B

Restricted Diffusion Freely Diffusion
Bright Contrast Dark Contrast
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Diffusion-Weighting Gradients

Diffusion-weighting gradient is often referred to as bipolar gradient
(or Stejskal-Tanner gradient)

g 90° | 1800

Stejskal, Tanner. J Chem Physics, 1965

Spin Echo: 90° RF, first gradient lobe, 180° RF, second gradient lobe




Diffusion-Weighting Gradients

7 90° | 1800

b-factor for rectangular pulse of spin echo

b =y2G25%(A — 5/3)
S
I S_ = exp(—bD)

0




High b-Value Diffusion

b=1407 b=1713

b=2813 b=3239 =36C b=4183 b=4700 s/mm?*

Zhou, et al. MRM, 2010
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Diffusion Tensor Imaging

Diffusion is truly a three-dimensional process. Hence, molecular
mobility in tissues may not be the same in all directions.

» Diffusion can be described by a tensor, with min. 7 acquisitions.

» The diffusion tensor can be an ellipsoidal approximation

_ |4 0 0]
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D D

D Le Bihan, et al. JIMRI, 2001
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Diffusion Tensor Imaging

Diffusion is truly a three-dimensional process. Hence, molecular
mobility in tissues may not be the same in all directions.

» Diffusion can be described by a tensor, with min. 7 acquisitions.

D Le Bihan, et al. IMRI, 2001

Y. Masutani et al. EJR, 2003 FAmap Fiber Tractography
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Anglogenesis

» Angiogenesis Is a complex process critical to the growth and
metastasis of malignant tumors.

» Tumor growth beyond 1-2 mm in solid tissues cannot occur
without vascular support.

» Early detection of such changes would allow assessment of
the therapeutic outcome of anti-vascular agents and aid in
diagnosis.

J. Folkman Eur J Cancer 1996

298>



Detection of Angliogenesis

Current methods of assessing angiogenesis can be considered as
either direct or indirect.

» direct method: microvascular density counting with
Immunostaining (most frequently used)

» indirect method: indirect biomarkers of angiogenesis detected
by imaging such as MRI using contrast agent (e.g. Gd)

- Non-invasive and provide functional information

J.A. d’Arcy RadioGraphics 2006
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DCE and DSC MR

Table 1

Comparison of the T2*- and T1-weighted Dynamic Contrast-enhanced MR Imaging Techniques

Parameter

Change in nssue signal intensity
Duration of effect

Period of optimal data acquisition
Magnirtude of effect

Optumal dose of contrast medium
Quantification methods used
Physiologic properties measured

Kinetic parameters derived
Pathologic correlates

Clinical MR imaging applications

J.A. d’Arcy RadioGraphics 20'06

T2%*-weighted Imaging

Darkening

Seconds

Subsecond

Small

=0.2 mmol’kg

Relative more than absolute
Perfusion, blood volume

Blood volume and flow, transit
ume

Tumor grade, microvessel den-
sity

Characterization of breast, liver,
and brain lesions; noninvasive
grading of brain tumors; di-
recting biopsy of brain tu-
mors; determination of prog-
nosis fl.'!l' b.-I'EIifl umMors; moni-
toring treatment (eg, radiation

Ao o Sl SN

T 1-weighted Imaging

Enhancement

Minutes

2-25 sec

Larger

0.1-0.2 mmol’kg

Relative and absolute

Transendothelial permeability, capillary
surface area, lesion leakage space

Transfer and rate constants, leakage
space

Microvessel density, vascular endothe-
lial growth factor

[esion detection and characterization;
improving accuracy of tumor staging;
prediction of response to treatment;
monitoring response to treatment;
allowing novel therapies, including

antiangiogenic drugs; detection of
tumor relapse
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DCE-MRI
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M.V. Knopp,et al. MCT, 2003
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DCE-MRI :
Pharmacokinetic Model

Endothelium
Kintrans I
| ‘ EES
—I CEES’ Ve
| Kouttrans

P.S. Tofts, et al. IMRI, 1997




Pharmacokinetic Model

Endothelium
Plasma Flow ‘ K, s
Plasma *‘ EES
Cp’ Vp —I CEES' Ve
‘ | K trans
out

C(t) = CEE((t) + vpCp(t) C(t) = [Gd] in tissue measured

C(t) =|Kintrans fot Cp(t)e Kouu /Ve E-tge! +
v,C,(t)

P.S. Tofts, et al. IMRI, 1997




Pharmacokinetic Model

Endothelium
Plasma Flow ‘ trans |
Plasma *‘ ==
Cp’ Vp —I CEES' Ve
‘ | kep :Ktrans/ve

C(t) = Kintrans fot Cp(t")e Kous™/ve t=t)dt" 4

v.C (etg
Asufne small plasma volume v, = 0 and K" = K Trans

# C(t) = Ktras fot Cp(t')e-—kep(t—t')dt’
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DCE-MRI Analysis
> Qualitative ( | \ ’(

» Uptake curves -

» Semi-quantitative
 Area under the curve (AUC) e
> Quantitative 1w N

e Tracer-kinetic modeling (K %"s, Vg, Fg, €tc)

M.V. Knopp,et al. MCT, 2003 r;t /&

e \ e

. e n
A.D. King, et al, PLOS, 2015 L !
Wang,et al, TCRT 2016 Krransmap  Fg map
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Assessment using Diffusion
MRI —Brian tumors

» For malignant glioma, the radiologic response (RR) method using
3D measurements of tumor volume - association with survival.

» Diffusion imaging (DTI) could be used to investigate the feasibility
of detection of early response...

» A brain study of 60 patients with high-grade glioma, with gross tumor
treated to a final median dose of 70 Gy in 6-7 weeks. Diffusion
Imaging with a single-shot, spin-echo, echo-planar imaging (EPI)
sequence. Scanned 1 week before and 1, 3, and 10 weeks after the
start of radiation.

D. A. Hamstra, JCO, 2008
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Assessment using Diffusion
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Assessment using Diffusion

>

= .

MRI —Brian tumors

For malignant glioma, the radiologic response (RR) method using
3D measurements of tumor volume - association with survival.

Increased diffusion of water molecules (measured as an increase in
the apparent diffusion coefficient (ADC)) occurs shortly after a
successful treatment, and correlates with the breakdown of cellular
membranes and reduction in cell density that both precede changes
In tumor size.

D. A. Hamstra, JCO, 2008
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Assessment using Diffusion
MRI -White Matter Damage

» Stereotactic radiosurgery (SRS) has been an effective treatment for
the management of brain metastases, acoustic neuromas and other
brain diseases.

» Diffusion tensor imaging (DTI) was used to investigate WM
changes following SRS ...

» A study of 15 patients with recurrent unifocal malignant gliomas,
treated with concurrent SRS/BVZ treatment, with radiation dose of
from 18Gy to 25Gy. Scanned 1-4 days prior to SRS and 7 days and
two months after SRS treatment

Chang Z, et al., Technol Cancer Res Treat, 2014.
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Assessment using Diffusion
MRI -White Matter Damage

T Chang Z, et al., Technol
‘ $s Cancer Res Treat, 2014.
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Assessment using Diffusion
MRI -White Matter Damage
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Chang Z, et al., Technol

Cancer Res Treat, 2014.
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Assessment using Diffusion
MRI -White Matter Damage

» Stereotactic radiosurgery (SRS) has been an effective treatment for
the management of brain metastases, acoustic neuromas and other
brain diseases.

» » As compared with non-irradiated contralateral area, considerable
decrease in fractional anisotropy (FA) and tracked neural fibers in
the irradiated white matter volumes after 1-week of SRS, with
further decrease after 2-month after SRS.

Chang Z, et al., Technol Cancer Res Treat, 2014.
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Assessment using DCE-MRI
—Brian SRS

» Stereotactic radiosurgery (SRS) has been an effective treatment for
the management of brain metastases, acoustic neuromas and other
brain diseases.

» A study of 12 patients with recurrent unifocal malignant gliomas,
each up to 5 cm in maximum dimension.

> Patients were treated with concurrent SRS/BVZ treatment, with
radiation dose of from 18Gy to 25Gy. Scanned 1-4 days prior to
SRS and 7 days and two months after SRS treatment.

» Diffusion imaging and DCE-MRI were used to investigate for
possible OS prediction.

Wang, et al., J. Radiosurgery

and SBRT, 2018.
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Post 1 Post 2
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Results: Tumor Response

Ij? White arrows indicate the PTV location

Functional MR Parametric Maps
from a selected patient.

Wang, et al., J. Radiosurgery

and SBRT, 2018.
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Results: Tumor Response

Summary of functional parameter statistics.

Pre scan Post 2 scan
PTV 0.0183 £0.0115 0.0104 £0.0084 0.0030 + 0.0054* (p=0.035)
min’ GTV 0.0196 £ 0.0155 0.0147 £0.0195 0.0064 £+ 0.0033* (p=0.035)
VI2Gy - PTV | 0.0100 £ 0.0068 0.0080 £ 0.0065 0.0058 + 0.0091°* (p=0.035)
0.0084 £ 0.0055 ).( i 0.0065 £ 0.008
F 5 PTV 0.0992 £ 0.0721
min’ GTV 0.0921 £ 0.0622
VI2Gy 0.0800 + 0.0441
VI2Gy—-PTV | 0.0766 +0.0399
PTV 0.0127 £ 0.0093 0.0069 + 0.0067 )22% (p=0.017)
GTV 0.0117 £0.0087 0.0066 £ 0.0061 “(p=0.035)
VI2Gy - PTV | 0.0100 £ 0.0072 0.0066 + 0.0047 0.0056 + 0.0052* (p=0.035)
0.0062 £ 0.0060
ADC PTV
10° GTV
mm’s | VI2Gy—-PTV

[T ST O R S

Wang, et al., J. Radiosurgery and SBRT, 2018.
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Radiomics
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Wang, et al., J. Radiosurgery and SBRT, 2018.

Fine Texture
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Results: Radiomics

Normalized changes of radiomics features in different ROIs

Post 1 Scan Post 2 Scan

S94Nyea} SoIWoIpel

6 different image modalities in 4 different ROIs

Wang, et al., J. Radiosurgery and SBRT, 2018.
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OS Prediction

» Selected radiomics features with high coefficient r values In
correlation tests were investigated with support vector regression
(SVR) to predict OS with leave-one-out cross validation.

» When using a selected group of 5 features’ normalized changes
(Ktrans: C-6 in PTV; ADC: C-7 Iin PTV,; Tlw: F-2 and C-7 in PTV;
C-7 in GTV) in the 2" post-treatment scan for outcome prediction,
9 out of 12 patients’ OS time were accurately predicted (Mean
absolute error = 1.47 mo, RMSE = 2.10 mo).

Wang, et al., J. Radiosurgery and SBRT, 2018.
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Assessment using DCE-MRI—
Neurocognitive Dysfunction

» Radiation therapy (RT) iIs a major treatment modality for malignant
and benign brain tumors.

» Important to identify biomarkers (e.g. cerebral vascular injury) for
early assessment and prediction of late neurotoxicity...

» A study of 10 patients with low-grade glioma or benign tumor,
treated with 3D conformal RT, with radiation dose of 50.4-59.4
Gy in 1.8 Gy fractions. 1-2 weeks prior to RT, at weeks 2—3 and
weeks 5—6 during the course of RT, and at 1 month and 6 months

following the completion of RT.

Cao, et al., Clin Cancer Res. 2009



Assessment using DCE-MRI—
Neurocognitive Dysfunction
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Changes in vascular volumes (Vp) & blood-
brain permeability (Ktrans) versus doses Cao, et al., Clin Cancer Res. 2009
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Assessment using DCE-MRI—
Neurocognitive Dysfunction

Changes in Learning 6m
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Learning scores decline as
changes in Ktrasn and Vp Cao, et al., Clin Cancer Res. 2009

2155



Challenges and Limitations

Various technical challenges and limits encountered:
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Challenges and Limitations

Various technical challenges and limits encountered:

[ ]
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Distortion Correction for
Diffusion MRI using EPI

» Spatial and intensity distortion in EPI images due to inhomogeneous
static magnetic fields is a well-known phenomenon

Holland et al., Neuroimage. 2010

2155



Distortion Correction for
Diffusion MRI using EPI

» Distortions in EPI-based Diffusion MRI: Eddy-currents and EPI distortions

« Eddy-currents
distortions

s
{2

o g affect DWIs
7

affect DWIs,
including the
b =0 s/mm?

® EPI
distortions

Irfanoglu et al., MRM. 2019 qa
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Distortion Correction for
Diffusion MRI using EPI

uncorrected

corrected

FA increase by 113% due to
distortion

TR (trace) increase by 69%

due to distortion

Irfanoglu et al., MRM. 2019
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Distortion Correction for
Diffusion MRI using EPI

» Spatial and intensity distortion in EPI images due to inhomogeneous
static magnetic fields is a well-known phenomenon

» Various distortion correction methods have been proposed: the
unwarping methods, PLACE, the reversed gradient methods

Holland et al., Neuroimage. 2010




Distortion Correction for
Diffusion MRI using EPI

» The reversed gradient method makes use of the fact that the distortion
behaves “symmetrically” when reversing the phase encoding direction

b, forward b, reverse overlay

original

©
<))
+—
(8}
(<))
P =
S
o
Q

E 5

Teruel et al., MRM. 2015




Distortion Correction for
Diffusion MRI using EPI

» Evaluating the correction strategies is challenging
» Computer simulation,
» Hardware phantoms,

» Undistorted image (e.g. T1Wimage)

» Framework based on the reversed PE and gradient methods

S ——

AT P o
7 T
AP PE S . Ly

A perfect distortion correction method to the two datasets with opposite
diffusion encoding directions or PE directions would produce identical
Images.

Irfanoglu et al., MRM. 2019
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Distortion Correction for
Diffusion MRI using EPI

» Evaluating the correction strategies is challenging

» Framework based on the reversed gradient methods
AP AP-corrected

h' &
QC®. | ariability maps,
» e 2o considered as “residue”
wr * "¢ after correction
“}.‘_ ,'".

Post Correction

PA PA-corrected |rfan0glu et al., MRM. 2019
» Calculating the variability map as a )
measure of difference of images Froeling et al., MRM. 2017
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Challenges and Limitations

Various technical challenges and limits encountered:
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Efficient Calc. for DCE-MRI

» PK parameters in DCE-MRI analysis are commonly calculated
with nonlinear least-squares (NLSQ) methods or linear least-
squares method using the integral form of the PK model (ILLSQ)

» Another efficient method for calculating pharmacokinetic (PK)
parameters developed for DCE-MRI studies
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Efficient Calc. for DCE-MRI

» To improve the computational efficiency, a new method for
calculating PK parameters for DCE-MRI analysis was proposed.

> In this method, curve fitting based on linear least-squares method
was applied to the derivative expression of the PK model with a
KZ low-pass filter (abbreviated as the DLLSQ method).

t
C.(t) = Ktrans jo Cp(w) - e KertW gy + v, - C,y(8)

dc, () dCp(t)
c;t = (KT 4wy, - kep) - Cp(t) = kep - Ce(0) + vy - é)t




2D simulation

Ktrans

(a) True values;

(b) DLLSQ results;
(c) ILLSQ results;
(d) NLSQ results;

(e) difference map of
DLLSQ results;

(f) difference map of
ILLSQ results;

(g) difference map of
NLSQ results
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In vivo study

(a) (b) (c)
Ktrans
\ v /) \ » /) \ i /)
\\ ’ / \\ ’ / \\ ’ /
s ;_‘ll‘
(d) (e) (f
k 1 \ !
ep \ <) \ ) \ a )
W/ \ / &/
, ‘ 3 Nt ~ .
A — —
(8) (h) (i)
\ / \ / \ -2/
v, . &t/ Y
= .

DLLSQ method

ILLSQ method

NLSQ method

miml
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Efficient Calc. for DCE-MRI

15.46 2.21

7.6x10? 32.90 9.31

2. 1.
<8 S 5.86x102 1.52x102 82.53 52.17 31.96 13.04 13.86 12.40
x104 x103

In the simulation and in vivo studies, the calculated parameters using the proposed method
were comparable to those using the existing methods with improved efficiency.

When analyzed within certain parameter intensity ranges at At=1s, the proposed method
was more accurate than the current methods with improved efficiency by a factor up to 478.

2155
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Efficient Calc. for DCE-MRI
using Deep Learning

» Machine learning (ML) based approach to directly estimate the PK
parameters from the acquired DCE-MRI image-time series

Direct Estimation

ML Model

TK Model

Image Time Series  Contrast Concentration PK Parameter Maps

Ulas, et al,, Front Neurol. 2019
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Efficient Calc. for DCE-MRI
using Deep Learning

ﬂ;:;‘ 4x4 Conv + RelU

Local pathway

/4 —
‘ ’ 24 x24 x 32
2 Parameter
DCE image paiches ____...-;;;;:::::::;;;::...- ; / FCN3  Mmaps

Concatenation

", ../.
C“f;
(':2'}; jﬁ’f& 24 x 24 x 32 l 24 x 24 x 64 24 x 24 x 128

24 x 24 x 21 24 x 24 x 256

24 x 24 x 32
Global pathway

Over160 million training samples, i.e., number of total voxels, out of 15 patients

Deep Learning Architecture Ulas, et al,, Front Neurol. 2019
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Efficient Calc. for DCE-MRI
using Deep Learning

» More robust and faster than conventional model fitting

SSIM:0.998

SSIM: 0.961

2155
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Challenges and Limitations

Various technical challenges and limits encountered:
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Fast Imaging for DCE-MRI

High temporal resolution is desirable in DCE-MRI

» To ensure the accuracy of pharmacokinetics (PK) analysis
Reliable AIF information derivation demands 1 s or faster

» To achieve feasible perfusion measurement

Requires high temporal resolution to capture vascular phase
of contrast medium delivery
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Fast Imaging for DCE-MRI

To accelerate MRI acquisition, various fast imaging methods has been
proposed

» Physically manipulate spin dynamics to use available
magnetization more efficiently

EPI, Spiral, RARE, GRASE, ...

» Sparsely sample k-space and reconstruct a complete image through
a non-standard reconstruction

keyhole, SENSE, GRAPA, BLAST, SPEED, CS, TV....
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Fast Imaging for DCE-MRI

» Sparse radial sampled data can be reconstructed by using total
variation (TV)/total generalized variation (TGV)

» The concept is based on the first order/second order derivative
calculation was commonly adopted in the constrained image
reconstruction as to minimize the gradient of the reconstructed
Image

» To explore the feasibility of fast DCE-MRI with TGV for tracer-
Kinetic (TK) studies
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Fast Imaging for DCE-MRI

(a)

)

S

Original

(b)

Reconstructed (x4)

Original post-injection image (a) and reconstructed image with 32 radial k-space lines(b). The
red contour indicates ROI that contains the tumor
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Fast Imaging for DCE-MRI

Ktrans

(a) o

? : ‘wf 1 f* "i.f %

> \ =1 3 Permeability
(@ o g

1 {'\,"lf 0 > Perfusion

' RTET e

Ly A

) R

T ‘65 i' } N H Perfusion

R g

Wang CH, et al., TCRT, 2016
Original Reconstructed (x4) Difference
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Fast TK Mapping

» These techniques as “indirect” methods, because the anatomical
Image series are reconstructed first, followed by a separate step for
TK parameter fitting

» 1) Spatial TK parameter maps have much lower
dimensionality than those of dynamic image series (two to
four parameters, compared to 50—100 time points, per voxel),
and

» 2) TK model-based reconstruction directly exploits what is
known about contrast agent kinetics

» “Direct” estimation of TK parameters from undersampled (K,t)-
space data or undersampled DCE-MRI data
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Fast TK Mapping

» These techniques as “indirect” methods, because the anatomical
Image series are reconstructed first, followed by a separate step for
TK parameter fitting

» “Direct” estimation of TK parameters from undersampled (k,t)-
space data or undersampled DCE-MRI data

ZITS



Fast TK Mapping

Contrast Agent , Under-sampled
Anatomic Images:

Concentration: (k,t)-space data:
s(r,t
CA(r,t) (r.t) S(ktc)

TK Parameters:
Ktrans(r), Vp(l')

M(r)
R,(r,0)
S(r,0)

Direct Method

DCE-MRI forward model flow chart: Y Guo, etal., MRM, 2017

Conversion from TK parameter maps to undersampled (k,t)-space.
Patlak model is used to convert TK parameter maps to contrast concentration @
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Fast TK I\/Iapplng

Retrospective evaluation of direct and indirect

reconstruction of Ktrans and vp maps. Y Guo. et al. MRM. 2017

Ktrans map by Direct
Method with the sparsity
constraint

Undersampling rate:
R =100

Only Patlak model used;
Use of more-sophisticated
models (eg, extended
Tofts model ) possibly
nonconvex, to be further
Investigated.

=
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Fast TK Mapping

» These techniques as “indirect” methods, because the anatomical
Image series are reconstructed first, followed by a separate step for
TK parameter fitting

» “Direct” estimation of TK parameters from undersampled (K,t)-
space data or undersampled DCE-MRI data

2155



Fast TK Mapping using
Deep Learning

Corrupted
image-time series Fully connected layers Residual PK maps

Deep Learning Architecture

Ulas, et al., MICCAI 2018

=
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Fast TK Mapping using
Undersampling rate: Deep Learnlng

R=10

Model-based CNN—-A=10 OCNN-A=0.5 Fully-sampled

SSIM = 0.9491 SSIM = 0.9523

3D volume takes ~ 1.5 s for DL while the Ulas, et al" MICCAI 2018

UL EREREL A E G RERTEERE I u Y Guo, et al., MRM, 2017
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Outline

Introduction of MR quantitative imaging for treatment assessment
Review of diffusion imaging, DCE/DSC imaging...

Treatment assessment using diffusion MRI

Treatment assessment using DCE-MRI

Developments of MR quantitative imaging for treatment assessment

Challenges and future directions

298>



Challenges and future directions

» Reproducibility of quantitative data

To achieve this goal, standardized acquisition protocols, data
analysis and assessment shall be promoted

» Interpretation of biomarker

Physiologic meanings need to be fully examined towards the future
clinical application

» Image quality improvement
Potentially affect the quantitative assessment outcome
» Novel image analysis methodology

Morphological information image texture features, deep machine learning

Z.Chang, et al. WIR, 2015 %
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