FDG-PET/CT Imaging Feedback Tumor Response Assessment Treatment Adaptation

Di Yan, DSc, FAAPM Chief of Physics & Professor Radiation Oncology, Beaumont Health System, MI

Disclosure: no conflict interest on this talk

Main Subjects

- 1. Treatment tumor response assessed quantitatively using FDG PET/CT imaging feedback
- 2. Quantifying treatment objective with using tumor voxel dose response
- 3. Treatment planning optimization and delivery

FDG-PET/CT Imaging (?) for Tumor Response

- Tumor Metabolic Activity is most likely correlated to tumor cell Ο Survival/Growth during the radiation treatment
- Therefore, change of metabolic image intensity (due to radiation Ο dose) depends upon the tumor intrinsic radiosensitivities, proliferation, hypoxia, change of micro environment, etc

- **PET**: [¹⁸F, ¹¹C] Glucose, Lactate, Glutamine, Glutamate \bullet
- **MRI**: Hyperpolarized [1-¹³C] Pyruvate, Lactate, Glucose; **APTw, Glu-CEST**

FDG-PET/CT is so far the most mature & popular modality to measure tumor metabolic activity!

Adaptive Treatment Protocol (IRB 2012-100)

Adaptive Treatment Process:

- 2 feedback PET/CT images obtained within the 2nd and 3rd treatment weeks
- Utilizing deformable PET/CT image registration, the change ratios of tumor voxel SUV vs its pre-treatment baseline SUV are obtained and used to quantify tumor voxel response

Tumor Voxel SUV Change Ratio vs Radiation Dose

Tumor voxel SUV dynamics can be described using a linear random process with the slop A.

$SUV_{28Gy}(v)$

Distribution of Voxel Dose Response for 17,086 Voxels in 34 HN Tumors

Cumulative frequency distribution of SF₂ values for head and Figure 2 neck tumours (n = 88), carcinomas of the cervix (n = 145), colorectal cancers (n = 65) and lymphomas (n = 8)

T Bjork-Eriksson, CML West, etc: "In vitro Radiosensitivity ". BJR 1998, 77:2371-75

Post-PET

Relationship of Tumor Voxel SUV₀ & DRM vs Tumor Control

Tumor Voxel Control Probability (TVCP): Lookup Table

Int J Rad Oncol Biol Physics 2019, 104(1):207-18

Tumor Dose Prescription Map

150 Gy

85 Gy

Effect of Dose Response Heterogeneity for Individual Tumors

/		
		··
/		
		··
) 1∠	10	16
	.~	

Effect of Heterogeneity in Individual Tumor Target The Most Resistant Area

Tumor Response Guided Adaptive Treatment Process

SRS or PRT Boost

Acknowledgement

Shupeng Chen, MS

George Wilson, PhD

An Qin, PhD

Daniel Krauss, MD

Peter Chen, MD

Rohan Deraniyagaia, MD

*Supported by BHS Research Fund

