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Medical Image Synthesis

* With the development of artificial intelligence, especially deep
learning, medical image synthesis between different medical imaging
modalities/protocols is an active research field with great clinical
interest in radiation oncology and radiology.

* Medical image synthesis aims to facilitate a specific clinical workflow
by bypassing or replacing a certain imaging procedure when the
acquisition is infeasible, costs additional time/labor/expense, has
lonizing radiation exposure, or introduces uncertainty from image
registration between different modalities.

 The benefit of medical image synthesis has raised increasing interest in
a number of potential clinical applications such as MRI-only radiation
therapy treatment planning, CBCT-guided adaptive radiotherapy,
quantitative PET/MRI imaging, image segmentation, multimodality
image registration, high-quality image generation, and etc.



Deep Learning in Medical Image Synthesis (120+ papers)
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MRI-based Synthetic CT for
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Synthetic CT-aided
MRI-CT Registration
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MRI-based Synthetlc CT for PET Attenuatlon Correction (AC)
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CBCT-Guided Adaptive
Photon and Proton Radiotherapy
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Synthetic CT-aided CBCT-CT Registration

Synthetic CT Generation based on Dense cycle GAN
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Multiple Organ Segmentation in
Head and Neck CT Aided by sMRI
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Multiple OAR
Segmentation in Pelvic
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o \Tralning MRI

architecture
5 B ;i‘,
fE Featur = @ Attention gate |

Deonv.+PReLU + bn

= Dense — block

1
ﬁ Conv. (stride = 1) + PReLU + bn |

e ' T ‘Sigm,,,-d ,
) ﬂ Conwv. (stride = 2) + PReLU + bn |

!X
1

Concatenation P Element — wise sum q o q
@ Element — wise multipication

Generator:
MRI to CBCT

extraction

Normalized Intensity

///

tic CBCT

Dlscrlmlnator Discriminator :
CBCT MRI

Synthetlc MRI Cycle CBCT

o
<)

Cycle MRI

Manual contour

c
2
F=
14
4
s
%
3

—
Q
Ul

—

Method DSC HD (mm) MSD (mm) ltﬁi])) CMD (mm) VD (cc)

DSUNet sMRI 0.93+0.05 6.45+5.24 0.51+0.27 0.81£0.52 1.29+1.28 8.642+7.23
DAUNet CBCT 0.90+0.06 11.32+12.75 0.74+0.44 1.18+0.76 2.08+2.29 14.26+16.59
DAUNet sMRI 0.95+0.02 4.69+4.92 0.44+0.22 0.80+0.69 0.90+0.68 6.55+6.68

P-value (DAUNet sMRI vs. DSUNet sMRI) 0.003 0.049 0.154 0.960 0.023 0.096

P-value (DAUNet sMRI vs. DAUNet CBCT) <0.001 0.002 <0.001 0.009 <0.001 <0.001
DSUNet sMRI 0.84+0.07 5.48+2.57 0.80+0.35 1.12+0.47 2.26+1.63 4.13+£5.71
DAUNet CBCT 0.82+0.09  5.83£3.30  0.9+0.47  1.30£0.66 2.58+1.92 3.98+5.21
DAUNet sMRI 0.86+0.06 4.82+2.37 0.73£0.37 1.08+£0.55 1.954+£1.58 3.32+5.54

P-value (DAUNet sMRI vs. DSUNet sMRI) <0.001 0.043 0.126 0.584 0.179 0.317

P-value (DAUNet sMRI vs. DAUNet CBCT)  <0.001 0.010 <0.001 0.009 0.031 0.403
Physics in Medicine & Biology DSUNet sMRI 0.88+0.05 8.62+5.15 1.03+1.66 2.04+3.82 3.72+4.18 5.31+7.78
A DAUNet CBCT 0.83+0.07 13.14+18.71 1.19£0.87 2.31£2.51 3.92+4.65 8.32+8.47

CBCT-Based Synthetc MRI Generation or CBOT-Guided | e e DAUNet sMRI 0.91£0.04 5.46+3.19 0.71£0.65 1.62+2.36 1.98+1.86 3.933.86

Adaptive Radiotherapy Male pelvic multi-organ segmentation aided by CBCT-based
synthetic MRI P-value (DAUNet sMRI vs. DSUNet sMRI) <0.001 <0.001 0.192 0.434 0.002 0.155

' ' e T s e S P-value (DAUNet sSMRI vs. DAUNet CBCT) ~ <0.001 0.006 0.001 0.130 0.005 <0.001

extractlon

Bladder

}

Trained
model:
CBCT to MRI

Patch Contour
extraction refinement

Prostate

Yang Lei, Tanghe Wang, Joseph Harms, Yabo Fu, Xue Dong, Walter J. Curr




Non-AC PET-based Synthetic CT
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PET Self Attenuation Correction (AC)
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Translator Disclaimer

Deep learning-based image quality
improvement for low-dose computed
tomography simulation in radiation therapy

Low dose CT Imaging
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High Quality Proton Portal Imaging
(PPI) Aided by DRR
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Deep-Self-Supervised High-Resolution CT Imaging
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Ground Truth
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HECT - sHECT

Synthetic Dual Energy CT
(DECT) Imaging from Single
Energy CT (SECT)
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CBCT-based Relative Stopping Power Map (RSPM)
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Summary

Promising work on inter-modality synthesis and intra-modality synthesis is being
performed in image segmentation and registration, treatment planning, fast imaging,
real-time tumor tracking and image-guided adaptive radiotherapy.

To account for the potential unpredictable synthetic images that can be resulted by
noncompliance with imaging protocols as training data, or unexpected anatomic
structures, additional quality assurance (QA) step would be essential in clinical
practice. The QA procedure would aim to check the consistency on the performance
of the model routinely as well as the synthetic image quality of patient-specific case.

To maximize the potentials and benefits of medical image synthesis in medical
imaging and physics fields, it is critical to understand that a successful application
depends as much on the nature of the task as on the nature of the synthesis
algorithms, and the availability and quality of data.

With the development in both artificial intelligence and computing hardware, more
learning-based image synthesis methods are expected to facilitate the clinical
workflow with novel applications.
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