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“Although it has  been known for many decades that radiotherapy 

patients differ in their radiosensitivity based on their genetic 

makeup differences, the ability to understand this variability and to 

potentially include it in treatment planning is only now becoming 

feasible.  This talk will cover basic concepts in genetic variability, 

the impact on radiosensitivity (called radiogenomics), and recent 

results in modeling this variability.  The talk will finish with thoughts 

about the next ten years of opportunities and potential progress in 

radiogenomics.”



“There is a lot to be gained by a 

much better understanding of the 

responses of normal tissues (and 

tumors) to a whole range of dose-

volume distributions.”  

-- Michael Goitein (2007)



• 989 patients 

• treated with 3DCRT or IMRT to

• 70-86.4Gy@1.8-2.0Gy/fraction 





Predictive modeling: inputs
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Outcomes 
determined by 
physics: 
prescription 
dose, normal 
tissue volume 
effects 

Outcomes 
determined by 
clinical 
radiobiology 
factors: stage, 
grade, 
fractionation, 
hypoxia, 
radiosensitivity, 
proliferation

The Past: 
Outcomes = physics or biology

JOD



• Double-stranded DNA molecule held together by 
chemical components called bases 
• Adenine (A) bonds with thymine (T); cytosine(C) 
bonds with guanine (G) 
• These letters form the "code of life". Estimated to 
be about 2.9 billion base-pairs in the human 
genome wound into 24 distinct bundles, or 
chromosomes 
• Written in the DNA are about 30,000 genes which 
human cells use as starting templates to make 
proteins. These sophisticated molecules build and 
maintain our bodies 

(taken from the BBC)

About DNA



Genetic contributions to a complex phenotype

Key points

• Replicated single SNPs 

identified to date explain 

only ~5% of the phenotypic 

variance for height.

• Common SNPs in total 

explain another ~40% of 

phenotypic variance. 

• Hence, most variation due 

to SNPs has been 

undetected in published 

GWASs because the effects 

of the SNPs are too small to 

be statistically significant.



‘Radiogenomics’ unfortunately used in two 

ways:

(1) imaging correlations with tumor genomics,

(2) correlations between ‘radiation response’ 

and genomics.

I prefer ‘radiation response genomics’ to be 

clear.



Evolution drives modularity, but imperfectly

Key points

• Evolution works by 

introducing random 

differences in the machinery 

responsible for any defined 

phenotype.

• Genotypic modularity 

makes evolution feasible

• But inevitably, evolution 

randomly tries “crosstalk” 

links, to see if they are 

favorable

Evolution (1996)



Small genetic effects on many processes is typical

Key points

• Single genes contribute to 

multiple biological 

processes

• Complex phenotypes are 

typically impacted by many 

gene, 

• Genes impact phenotypes 

mostly through small effects

• Hence, many SNPs are 

likely to impact typical 

complex phenotypes

[Phenotype: a defined characteristic or endpoint, e.g., height, xerostomia, survival time, etc.]



“…several hundred thousand SNPs throughout the genome are typed in a large
series of disease cases and disease-free controls. Allele and genotype frequencies
at each of these SNPs are then compared between the case group and the control
group to detect alleles or genotypes that are over-represented in one group
versus the other. A statistically significant association implies that there is a risk
variant close to the associated SNP (or plausibly that the associated SNP is the
risk variant)”



Polygenetic risk should be the expectation

Risk vs. prevalence

• Large differences in 
radiosensitivity are 
common, not rare.

• Common alleles 
typically have small 
effect sizes

• Damage response 
and wound healing 
are complex 
responses

But…



The polygenetic risk 

model hypothesis:
“Genetic differences in toxicity risk 
are likely to be highly polygenic, and 
unlikely to arise from a few rare 
alleles of high effect size.”



One approach: group SNPs into pathways

Key points

• Method aggregates SNPs 

along a biologically 

important pathway known to 

affect warfarin dosing – the 

enzymes of its metabolic 

pathway. 

• Focused on metabolic 

enzymes because of their 

similar direction of effect on 

warfarin – degradation.

• Still not highly predictive

[minor allele: nucleotide that is infrequent, yet seen in populations at that location]



New approach: use machine learning

Key points

• Machine learning 

approaches are now 

becoming common in trying 

to predict phenotype from 

(germline) genotype.

• Many approaches are being 

used

[germline: the genetic code at gestation, as distinct from altered genetics of tumors]





➢ Our goal is to predict how the risk of radiation toxicity 
varies between patients, based on germ line genome 
characteristics.

➢ Previous single-SNP models must overcome multiple-
testing correction due to a large number of SNPs being 
evaluated

➢ Important SNPs may fail to achieve genome-wide 
significance

➢ Furthermore, clinical radiosensitivity is known to be a 
complex phenotype involving many genes.

➢ Therefore, we have taken a many-SNP approach to 
developing predictive models, using machine learning 
methods

Rationale



Building the model

Split between 
training and 

final validation

Univariate
cutoff

Machine 
learning

First model
“Preconditioning

”

70/30 P<0.001
Use PCA to 

estimate risk

Random Forest 
or LASSO



What is ‘preconditioning’?

We attempt to replace the observed outcome 

with another outcome that takes account 

certain risk factors, introducing a more correct 

outcome ranking for the final genetic analysis. 

(Idea taken from Hastie and Tibshirani, The 

Elements of Statistical Learning)



Preconditioning (1st phase) model

Training 
data

V1V2Univariate
Analysis

Top 2

Logistic 
regression

V1
, 
V2

Sample Toxicity snp 1 snp 2 … snp N
S1 1 AA aa Aa
S2 0 AA AA aa

AUC 
calculation

Predicted outcomes

Best AUC

1 0.89
0 0.12

New outcomes (NTCP)

Top 3

…
Top N

Accounts for 
ethnicity



Random Forest
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Random Forest - training
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Random Forest - testing
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Performance test



➢ 368 patients with prostate cancer

- DNA was genotyped using Affymetrix genome wide array 

(v6.0)

➢ Quality control
- Missing rate > 5% of samples

- MAF < 5%

- Hardy-Weinberg equilibrium (p-value < 10-5)

- 613,496 SNPs remained

Dataset



Dataset for RB

➢ Outcome: rectal bleeding 

- RTOG ≤ 1 (coded 0) vs RTOG ≥ 2 (coded 1)

➢ Data split: rectal bleeding
- Training dataset

- 243 samples

- 49 events

- 749 SNPs ( p< 0.001; Chi-square test)

- Validation dataset
- 122 samples

- 25 events

➢ 5-fold CV or bootstrapping with 100 iterations

➢ Additive model
- Coded as the number of rare alleles



Q-Q plot for RB

True randomness would result in correlations 
close to the straight line.

P = 0.001



Model comparison for RB using 
validation data



Results for RB using validation data

Low risk: 2/40 High risk: 13/42



Dataset for ED

➢ Outcome: erectile dysfunction 

- SHIM ≤ 7 (coded 1) vs SHIM ≥ 16 (coded 0)

➢ Data split

- Training dataset
- 157samples

- 88 events

- 367 SNPs ( p< 0.001; Chi-square test)

- Validation dataset
- 79 samples

- 45 events



Results for ED using validation data



Results for ED using validation data

Low risk: 
12/26

High risk: 
20/27



Identifying important biological 
processes in the resulting models



How important is any given SNP?

Test this for each SNP by shuffling allele 
values (0,1,2) between patients.



How important is any given SNP?

SNP 1

Randomizatio
n

Data not used in tree = 36.8%

OOB error = 

Rand. error = 

Importance of SNP 1 = (Rand. error - OOB error)/ nOOB

SNP 1

SNP 3 SNP 6

SNP 2
0.12 0.100.80

0.22 0.14

0.84

0.82 0.90

0.380.80Training data

Bootstrapping data = 63.2%

Error = 0.88 – 0.80 = 0.40

Error = 0.38 – 0.18 = 0.20

0.920.88



SNP importance for RB

Max score x 0.4
336 SNPs

➔ 146 SNPs
118 Genes



Let’s find any genes near important SNPs

Gene
10Kb 10Kb

mysql client USCS Genome Browser

SNP

query



Biological processes for RB

# GO Processes/Genes

1 Regulation of ion transport

CACNA1D,CCL13,DPP6,GCK,GNB4,GPR63,HOMER1,IL1RAPL1,JDP2,KCNIP4,KCNJ6,NLGN1,NOS1AP,

PDE4D,PRKCB,PRKG1,VDR

2 Regulation of metal ion transport

CACNA1D,CCL13,DPP6,GCK,GNB4,GPR63,HOMER1,JDP2,KCNIP4,NOS1AP,PDE4D,PRKCB,PRKG1,V

DR

3 Regulation of ion transmembrane transporter activity

CACNA1D,GNB4,HOMER1,NLGN1,NOS1AP,PDE4D,PRKCB,PRKG1

4 Regulation of ion transmembrane transport

CACNA1D,CCL13,DPP6,GNB4,HOMER1,IL1RAPL1,KCNIP4,KCNJ6,NLGN1,NOS1AP,PDE4D,PRKCB,PR

KG1

5 Regulation of transmembrane transporter activity

CACNA1D,GNB4,HOMER1,NLGN1,NOS1AP,PDE4D,PRKCB,PRKG1

6 Regulation of transmembrane transport

CACNA1D,CCL13,DPP6,GNB4,HOMER1,IL1RAPL1,KCNIP4,KCNJ6,NLGN1,NOS1AP,PDE4D,PRKCB,PR

KG1

7 Regulation of transporter activity

CACNA1D,GNB4,HOMER1,NLGN1,NOS1AP,PDE4D,PRKCB,PRKG1

8 Second-messenger-mediated signaling

CACNA1D,GCK,GUCY1A2,HOMER1,JDP2,MCTP2,PDE4D,PRKG1

9 Regulation of system process

CACNA1D,CTNNA2,FGG,FST,GPR63,GUCY1A2,NLGN1,NOS1AP,PDE4D,PRKCB,PRKG1,TENM4,TNR



Protein-protein interaction for RB



SNP importance for ED

Max score x 0.3

236 SNPs

➔ 109 SNPs
67 Genes



GO processes for ED
# GO Processes/Genes

1 Negative regulation of heart contraction

CXCR5,PDE4D,PRKCA,SPX

2 Negative regulation of blood circulation

CXCR5,PDE4D,PRKCA,SPX

3 Neutrophil chemotaxis

CXCR5,PDE4D,PRKCA

4 Neutrophil migration

CXCR5,PDE4D,PRKCA

5 Granulocyte chemotaxis

CXCR5,PDE4D,PRKCA

6 Granulocyte migration

CXCR5,PDE4D,PRKCA

7 Regulation of blood circulation

CXCR5,GLRX3,MAP2K1,PDE4D,PRKCA,SPX

8 Regulation of muscle system process

CXCR5,GLRX3,MAP2K1,PDE4D,PRKCA

9 Regulation of muscle contraction

CXCR5,MAP2K1,PDE4D,PRKCA

10 Positive regulation of cell migration

CXCR5,DAB2IP,MAP2K1,PDE4D,PRKCA,SEMA5A,SMAD3



Protein-protein interaction for ED



Summary

# Processes

1

negative regulation of heart 

contraction

2

negative regulation of blood 

circulation

3 neutrophil chemotaxis

4 neutrophil migration

5 granulocyte chemotaxis

SNP level analysis

Gene level analysis

http://portal.genego.com/cgi/process.cgi?id=-372490315
http://portal.genego.com/cgi/process.cgi?id=-1647587552
http://portal.genego.com/cgi/process.cgi?id=-1900210360
http://portal.genego.com/cgi/process.cgi?id=-1696984199
http://portal.genego.com/cgi/process.cgi?id=-395606481


“Machine Learning on a Genome-wide Association Study to Predict Late 
Genitourinary Toxicity After Prostate Radiation Therapy”

Approach:

Patient reported late (2 yr.) urinary toxicity following prostate radiotherapy (weak stream). 
324 pts. (Mt. Sinai) 0.6M SNP arrays. Machine learning modeling building (PCA + Random 
Forests). Bioinformatics post model analysis.

Key  
results:

Validation of predictions in set-aside 
patient cohort not used for modeling.

(S. Lee, S. Kerns, H. Ostrer, B. Rosenstein, J. Deasy, and J. H. Oh, Int

J Radiation Oncology, Biology, Physics, early e-pub online. )

Bioinformatics post model analysis of the 
most critical interacting sub-network.  
Red underline = previous publications 
related to urinary function.



“Machine learning on genome-wide association studies to predict the risk of 
radiation-associated contralateral breast cancer in the WECARE Study”

Approach:
Fifty-two women with contralateral breast cancer and 153 women with unilateral 

breast cancer at increased risk of RCBC because they were < 40 years of age and 

received a scatter radiation dose > 1 Gy to the contralateral breast. Machine learning 

modeling building (PCA + Random Forests). Bioinformatics post model analysis.

Key  results:

(Lee S, Liang X, Woods M, Reiner AS, Concannon P, Bernstein L, Lynch CF, Boice JD, Deasy JO, 

Bernstein JL, Oh JH. Plos One. 2020 Feb 27;15(2):e0226157 )

Bioinformatics post model analysis of connected sub-
networks. Single cross- previously breast ca associated, 
dual cross – previously radiation induced carcinogen 
associated.



Summary: 

Appropriate machine learning on 

genomes can be a powerful tool for 

developing predictive models and 

understanding key biology…for a wide 

range of endpoints.



Key points

• Groups trying to understand 

genetic modification of 

response

• Potential to put this into a 

Lyman-Kutcher-Berman 

type volume effect NTCP 

model as one or more Dose 

Modifying Factors (DMFs)



The future?

• Progress is slow due to cost and complexity of data (genomics + dose) collection.

• Data sharing is difficult – algorithm sharing more feasible.

• Many important endpoints probably do have ML-modelable genetic risk components

– Brain radionecrosis

– Xerostomia

– Dysphagia

– Etc.

• Not applicable to all endpoints – e.g. those dominated by inflammation such as 

pneumonitis

• Still a role for key large genetic effects (e.g. BRCA1,2, ATM, etc.)

• Definitely a role for tumor radiosensitivity variations but requires biopsy.


