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“‘Although it has been known for many decades that radiotherapy
patients differ in their radiosensitivity based on their genetic
makeup differences, the ability to understand this variability and to
potentially include it in treatment planning is only now becoming
feasible.

The talk will finish with thoughts
about the next ten years of opportunities and potential progress in
radiogenomics.”



“There is a lot to be gained by a
much better understanding of the
responses of normal tissues (and
tumors) to a whole range of dose-
volume distributions.”

-- Michael Goitein (2007)



Pooled cohort analysis demonstrates the importance of
rectal sparing in preventing late rectal bleeding
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« 989 patients
 treated with 3DCRT or IMRT to
« 70-86.4Gy@1.8-2.0Gy/fraction
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Predictive modeling: inputs
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The Past:
Outcomes = physics or biology

Outcomes

determined by
Outcomes clinical
determined by radiobiology
physics: factors: stage,
prescription grade,
dose, normal fractionation,
tissue volume hypoxia,

radiosensitivity,
proliferation

effects

JOD



About DNA

e Double-stranded DNA molecule held together by
chemical components called bases

e Adenine (A) bonds with thymine (T); cytosine(C)
bonds with guanine (G)

* These letters form the "code of life". Estimated to
be about 2.9 billion base-pairs in the human
genome wound into 24 distinct bundles, or
chromosomes

e Written in the DNA are about 30,000 genes which
human cells use as starting templates to make
proteins. These sophisticated molecules build and
maintain our bodies

(taken from the BBC)



Genetic contributions to a complex phenotype

Common SNPs explain a large proportion of the heritability
for human height

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery!, Michael E Goddard? &
Peter M Visscher!

NATURE GENETICS VOLUME 42 | NUMBER 7 | JULY 2010

Key points

Replicated single SNPs
identified to date explain
only ~5% of the phenotypic
variance for height.

Common SNPs in total
explain another ~40% of
phenotypic variance.

Hence, most variation due
to SNPs has been
undetected in published
GWASSs because the effects
of the SNPs are too small to
be statistically significant.



‘Radiogenomics’ unfortunately used in two
ways:

(1) imaging correlations with tumor genomics,

(2) correlations between ‘radiation response’
and genomics.

| prefer ‘radiation response genomics’ to be
clear.



Evolution drives modularity, but imperfectly

N OF EVOLVABILIT -
COMPLEX ADAPTATIONS AND THE EVOLUTION O O Y Evolution (1996)
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« Genotypic modularity
makes evolution feasible

« But inevitably, evolution
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links, to see if they are
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Small genetic effects on many processes is typical

The ubiquity of pleiotropy in human disease

Kevin Chesmore' - Jacquelaine Bartlett? - Scott M. Williams**®

Human Genetics (2018) 137:39-44
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Key points

Single genes contribute to
multiple biological
processes

Complex phenotypes are
typically impacted by many
gene,

Genes impact phenotypes
mostly through small effects

Hence, many SNPs are
likely to impact typical
complex phenotypes

[Phenotype: a defined characteristic or endpoint, e.g., height, xerostomia, survival time, etc.]



Towards a complete resolution of the
genetic architecture of disease

Andrew B. Singleton’, John Hardy?, Bryan J. Traynor'® and Henry Houlden®*
Trends in Genetics 26 (2010)

“...several hundred thousand SNPs throughout the genome are typed in a large
series of disease cases and disease-free controls. Allele and genotype frequencies
at each of these SNPs are then compared between the case group and the control
group to detect alleles or genotypes that are over-represented in one group
versus the other. A statistically significant association implies that there is a risk
variant close to the associated SNP (or plausibly that the associated SNP is the
risk variant)”
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Risk

Polygenetic risk should be the expectation

Risk vs. prevalence
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But...

Large differences in
radiosensitivity are
common, not rare.

Common alleles
typically have small
effect sizes

Damage response
and wound healing
are complex
responses
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The polygenetic risk

model hypothesis:

“"Genetic differences in toxicity risk
are likely to be highly polygenic, and
unlikely to arise from a few rare
alleles of high effect size.”
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One approach: group SNPs into pathways

Pathway analysis of genome-wide data improves
warfarin dose prediction

Roxana Daneshjou Nicholas P Tatonetti’, Konrad J Karczewski'?, Hersh Sagrelya Stephane Bourgeons
Katarzyna Drozda®, James K Burmester®, Tatsuh|ko Tsunoda’, Yusuke Nakamura’, Michiaki Kubo’, Matthew Tector®,
Nita A Limdi®, Larisa H Cavallari®, Minoli Perera’®, Julie A Johnson11 Teri E Klein', Russ B Altman™'”"

From SNP-SIG 2012: Identification and annotation of SNPs in the context of structure, function, and disease
Long Beach, CA, USA. 14 May 2012

BMC Genomics 2013, 14(Suppl 3):511
Gene 1, Patient 1 G l A ] G
Score: 1
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Gene 1, Patient 2
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Key points

Method aggregates SNPs
along a biologically
important pathway known to
affect warfarin dosing — the
enzymes of its metabolic
pathway.

Focused on metabolic
enzymes because of their
similar direction of effect on
warfarin — degradation.

Still not highly predictive

[minor allele: nucleotide that is infrequent, yet seen in populations at that location]



“« _Genotype datasef D

~ L
R — -

Data processing
including data cleaning
and feature selection g
to create training data
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SCIENTIFIC REPg}RTS

Computational methods using
genome-wide association studies to
predict radiotherapy complications

e @and to identify correlative
molecular processes

Published: 24 February 2017
Jung Hun Oh!, Sarah Kerns?, Harry Ostrer®, Simon M. Powell*, Barry Rosenstein® &
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Rationale

» Our goal is to predict how the risk of radiation toxicity
varies between patients, based on germ line genome
characteristics.

» Previous single-SNP models must overcome multiple-
testing correction due to a large number of SNPs being
evaluated

» Important SNPs may fail to achieve genome-wide
significance

» Furthermore, clinical radiosensitivity is known to be a
complex phenotype involving many genes.

» Therefore, we have taken a many-SNP approach to
developing predictive models, using machine learning
methods



Building the model

Split between
training and
final validation

First model
“Preconditioning

Univariate
cutoff

Use PCA to

P<0.001 estimate risk

Machine
learning

Random Forest
or LASSO




What is preconditioning’?

We attempt to replace the observed outcome
with another outcome that takes account
certain risk factors, introducing a more correct
outcome ranking for the final genetic analysis.
(Idea taken from Hastie and Tibshirani, The
Elements of Statistical Learning)



Preconditioning (1%t phase) model
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Random Forest
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Random Forest - training
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Random Forest - testing
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Performance test



Dataset

» 368 patients with prostate cancer

- DNA was genotyped using Affymetrix genome wide array
(v6.0)

» Quality control
- Missing rate > 5% of samples
- MAF < 5%
- Hardy-Weinberg equilibrium (p-value < 10-°)
- 613,496 SNPs remained



Dataset for RB

Outcome: rectal bleeding
- RTOG < 1 (coded 0) vs RTOG = 2 (coded 1)

Data split: rectal bleeding

- Training dataset
- 243 samples
- 49 events
- 749 SNPs ( p< 0.001; Chi-square test)

- Validation dataset
- 122 samples
- 25 events

5-fold CV or bootstrapping with 100 iterations

Additive model
- Coded as the number of rare alleles



Observed —log;o(p)

Q-Q plot for RB
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AUC

Model comparison for RB using
validation data

0.9
Mean AUC (STD)

0 0.70(0.03) | 0.64(0.04) 0.63(0.05) | 0.61(0.07)
0.7 4| ——— ] }

0.6 - i L

05 . J

D4 | T T |

PRFR RFC PL LLR




Results for RB using validation data
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Dataset for ED

» Outcome: erectile dysfunction
- SHIM < 7 (coded 1) vs SHIM = 16 (coded o)

» Data split

- Training dataset

- 157samples

- 88 events

- 367 SNPs ( p< 0.001; Chi-square test)
- Validation dataset

- 79 samples
- 45 events



Results for ED using validation data

0.8
Mean AUC (STD)
0.62(0.03) | 0.57(0.04) 0.58(0.05) | 0.57(0.05)

0.7 - (
& 0.6- ]
-
<C

05 - {

04 -

.—l—— T T $
PRFR RFC PL LLR



Results for ED using validation data
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Identifying important biological
processes in the resulting models



How important is any given SNP?

Test this for each SNP by shuffling allele
values (0,1,2) between patients.



How important is any given SNP?
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Let’s find any genes near important SNPs
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Biological processes for RB

GO Processes/Genes

Regulation of ion transport
CACNA1D,CCL13,DPP6,GCK,GNB4,GPR63,HOMERL,IL1IRAPL1,JDP2,KCNIP4,KCNJ6,NLGN1,NOS1AP,
PDFAN PRKCR PRK (=1 \/NR

Reg GASTROENTEROLOGY 2005;129:591-608

CA RKGLV
DR

Re¢

ca Epidermal Growth Factor Partially Restores Colonic lon

Re¢ Transport Responses in Mouse Models of Chronic Colitis

CA RKCB,PR

aC DECLAN F. McCOLE, GERHARD ROGLER, NISSI VARKI, and KIM E. BARRETT

€(  Department of Medicine, School of Medicine, University of California, San Diego, San Diego, California

CACNA1D,GNB4,HOMER1,NLGN1,NOS1AP,PDE4D,PRKCB,PRKG1

Regulation of transmembrane transport
CACNA1D,CCL13,DPP6,GNB4,HOMERL,IL1IRAPL1,KCNIP4,KCNJ6,NLGN1,NOS1AP,PDE4D,PRKCB,PR
KG1

Regulation of transporter activity

CACNA1D,GNB4,HOMER1,NLGN1,NOS1AP,PDE4D,PRKCB,PRKG1

Second-messenger-mediated signaling

CACNA1D,GCK,GUCY1A2,HOMER1,JDP2,MCTP2,PDE4D,PRKG1

Regulation of system process

CACNAID CTNNA? FGG FST GPR63 GLICY1A2 NI GN1 NOST1AP PDEAD PRKCB PRKG1 TENM4 TNR



Protein-protein interaction for RB

Am J Physiol Gasirointest Liver Physiol 294 G208-G216, 2008,
First published October 25, 2007; doi:10.1152/ajpgi. 003982007,

Novel role of the vitamin D receptor in maintaining the integrity

of the intestinal mucosal barrier

Juan I\'[mg.' Zhongyi }"Jhuug.1 Mark W. Musch.' Gang _\'illg.2 Jun Sun,® John Hart,* Marc Bissonnette,'
and Yan Chun Li'

) O SLC1A1/EAAT3

Follistatin
(0888-8409/04/515.00/0 Molecular Endocrinology 17(12):2386-2302
Printad in UL5.A Copyright © 2003 by The Endocrine Socisty

doiz 10.1210me.2003-0281

A Crucial Role for the Vitamin D Receptor in
Experimental Inflammatory Bowel Diseases

MONICA FROICU, VERONIKA WEAVER, THOMAS A. WYNN, MARY ANN McDOWELL,
JO ELLEN WELSH, ano MARGHERITA T. CANTORNA




0.25

0.2¢

Feature importance

0.05¢

SNP importance for ED

Ranked SNPs

_________________ - ————————
Max score x 0.3
. 236 SNPs
~
= = 109 SNPs
67 Genes -
0 100 200 300

400



GO processes for ED

GO Processes/Genes

10

Negative regulation of heart contraction
CXCR5,PDE4D,PRKCA,SPX

Negative regulation of blood circulation
CXCR5,PDE4D,PRKCA,SPX

Neutrophil chemotaxis
CXCR5,PDE4D,PRKCA

Neutrophil migration
CXCR5,PDE4D,PRKCA

Granulocyte chemotaxis
CXCR5,PDE4D,PRKCA

Granulocyte migration
CXCR5,PDE4D,PRKCA

Regulation of blood circulation
CXCR5,GLRX3,MAP2K1,PDE4D,PRKCA,SPX
Regulation of muscle system process
CXCR5,GLRX3,MAP2K1,PDE4D,PRKCA
Regulation of muscle contraction
CXCR5,MAP2K1,PDE4D,PRKCA

Positive regulation of cell migration
CXCR5,DAB2IP,MAP2K1,PDE4D,PRKCA,SEMA5SA,SMAD3




Protein-protein interaction for ED

Role of Increased Penile Expression of Transforming Growth
Factor-f1 and Activation of the Smad Signaling Pathway in
Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats

Lu Wei Zhang, MD,” Shuguang Piac, MD, PhD,* Min Ji Choi, MS,” Hwa-Yean Shin, MS,*
Hai-Rong Jin, MD,” Woo Jean Kim, PhD,” Sun U. Song, PhD,t Jee-Young Han, MD, PhD,*
Seck Hee Park, PhD,* Mizuko Mamura, MD, PhD.* Seong-Jin Kim, PhD.% Ji-Kan Ryu, MD, PhD,” and

Jun-Kyu Suh, MD, PhD*
v ,A

W CUX1

W
Altered Penile Vascular Reactivity and Erection in the Zucker
Obese-Diabetic Rat

Christopher Wingard, PhD,” David Fulton, PhD,t and Shahid Husain, PhD#

“Brody School of Medicine at East Carolina University—Physiology, Greenville, NC., USA; "Medical College of
Georgia—Pharmacology, Augusta, GA, USA; *Medical College of South Carolina—Ophthalmelogy, Charleston, SC, USA




SNP level analysis

Summary
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http://portal.genego.com/cgi/process.cgi?id=-372490315
http://portal.genego.com/cgi/process.cgi?id=-1647587552
http://portal.genego.com/cgi/process.cgi?id=-1900210360
http://portal.genego.com/cgi/process.cgi?id=-1696984199
http://portal.genego.com/cgi/process.cgi?id=-395606481

"Machine Learning on a Genome-wide Association Study to Predict Late
Genitourinary Toxicity After Prostate Radiation Therapy”

Patient reported late (2 yr.) urinary toxicity following prostate radiotherapy (weak stream).
324 pts. (Mt. Sinai) 0.6M SNP arrays. Machine learning modeling building (PCA + Random
Approach: | Forests). Bioinformatics post model analysis.

:
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(S. Lee, S. Kerns, H. Ostrer, B. Rosenstein, J. Deasy, and J. H. Oh, Int
J Radiation Oncology, Biology, Physics, early e-pub online.)



"Machine learning on genome-wide association studies to predict the risk of
radiation-associated contralateral breast cancer in the WECARE Study”

Fifty-two women with contralateral breast cancer and 153 women with unilateral
Approach; breast cancer at increased risk of RCBC because they were < 40 years of age and
received a scatter radiation dose > 1 Gy to the contralateral breast. Machine learning
modeling building (PCA + Random Forests). Bioinformatics post model analysis.

Key results:
X
Ephrin-A™ TF
. ‘ receptors 2 T t
| i : R N lin 1
0.60 ‘ I ’_1 | ‘s CDG3T euregulin
- — — | f?f 1 PTPRO
2 0.55- | | ' - 4 t
: . l Ay ErbBa
Bdl-6
0.50
TT
i . i i ‘ i Y Neuregulin 3
PRFR PRFR PRFR PRFR RF LASSO Preconditioned BAéH2 e
(100% SNPs)(75% SNPs) (50% SNPs) (25% SNPs)(100% SNPs) LASSO

Bioinformatics post model analysis of connected sub-
networks. Single cross- previously breast ca associated,
dual cross — previously radiation induced carcinogen
associated.

(Lee S, Liang X, Woods M, Reiner AS, Concannon P, Bernstein L, Lynch CF, Boice JD, Deasy JO,
Bernstein JL, Oh JH. Plos One. 2020 Feb 27;15(2):e0226157 )



Summary:

Appropriate machine learning on
genomes can be a powerful tool for
developing predictive models and
understanding key biology...for a wide
range of endpoints.



Genomics models in radiotherapy: From mechanistic to machine learning

Kang et al. Med. Phys. 47 (5), May 2020
How to model radiobiology? Key points

Mechanistic: Assume a (augmented) mechanistic model and parameterize for best fit

» Groups trying to understand
Linear-Quadratic, Lyman-Kutcher-Burman, GARD Output genetic modification of

response
Data-driven: Find model(s) with best performance, which can guide mechanistic insight o Potential to put this into a

- Functional biology (“nature”) -

PORTOS, Michigan Bayesian Networks, PRFR

Lyman-Kutcher-Berman
type volume effect NTCP
model as one or more Dose
Modifying Factors (DMFs)

; 2
NTCP = = f e du

D —TDso-DMF; DMFQ- ... -DMF,
m-TDSG -DMF1 -DMF>- ... -DMF;C




The future?

* Progress is slow due to cost and complexity of data (genomics + dose) collection.
« Data sharing is difficult — algorithm sharing more feasible.
* Many important endpoints probably do have ML-modelable genetic risk components
— Brain radionecrosis
— Xerostomia
— Dysphagia
— Etc.

* Not applicable to all endpoints — e.g. those dominated by inflammation such as
pneumonitis

« Still a role for key large genetic effects (e.g. BRCAL,2, ATM, etc.)
» Definitely a role for tumor radiosensitivity variations but requires biopsy.

$ Memorial Sloan Kettering
=,/ Cancer Center



