APPLICATIONS AND CHALLENGES USING RADIOMICS FOR RADIATION THERAPY TREATMENT ASSESSMENT

FANG-FANG YIN, DUKE UNIVERSITY
AAPM 2020 VIRTUAL ANNUAL MEETING 07-15-2020

RADIOMICS: DEFINITION AND MOTIVATION

- Converts medical images into high-dimensional quantitative features
- Analyzes combined features with other patient data to provide clinical decision support. It has been investigated for:
 - Evaluating tumor prognostic or predictive abilities
 - Stratification of tumor histology or stages
 - Describing the relationship between images and clinical outcomes
 - Association with underlying gene expression patterns

Advantages:
- Noninvasive
- Individualized
- Low cost
- Potentially routine procedure

RADIOMICS APPROACHES AND MACHINE LEARNING

- Four major steps for radiomics applications:
 - Step 1: To acquire quality medical image
 - Step 2: To define volumes for feature analysis
 - Step 3: To represent quantitative information
 - Step 4: To build radiomics model for decision

 Machine-learning drives the success of radiomic applications through feature selection and classification to achieve high accuracy, reliability, efficiency and to reduce overfitting of models

RADIOMICS APPROACH 1: IMAGE ACQUISITION

- Potential variations in imaging for radiomics feature calculation:
 - Different imaging modalities (such as MRI, CT, PET, etc.)
 - Different imaging units (different CTs used in a hospital, etc.)
 - Different imaging parameters and dates used in the same imaging modality
 - Different reconstruction methods/parameters (i.e., CT/CBCT, MRI)
 - Different calculated datasets from 4D CT dataset (MIP, inhale, AveIP, ...)
 -

 These variations affect calculated feature values
 - Data harmonization minimizes variations between image data sets and should be done before any application

RADIOMICS APPROACH 2: IMAGE SEGMENTATION

- Features can be calculated from:
 - Whole image
 - Region-of-interest (ROI): tumor, lung, a specific structure/organ, or a volume inside lung as shown in figures

 Feature values could be very different if using different ROIs

 Accurate image segmentation is very critical: manual, automatic, and semi-automatic segmentation

DISCLOSURES
- NIH: served as PI or co-PI for the following grants
 R21CA218940, R01CA184173, R21CA195317, R01EB028324
- Varian Medical Systems: research grants
- Duke Kunshan University: professor
RADIOMICS APPROACH 3: FEATURE EXTRACTION

- Typical four feature groups:
 - **Intensity**: estimate the first order statistics of the intensity histogram
 - **Shape**: describe the 3D geometric properties of the tumor (or ROIs)
 - **Textural features**: quantify the intra-tumor heterogeneity. They can be derived from the grey level co-occurrence matrix (GLCM) and grey-level run length matrix (GLRLM), etc., arranging over all thirteen directions (9x3).
 - **Wavelet features**: transform domain representations of the intensity and textural features - they can be computed on different wavelet decompositions of the original image using a cofif wavelet transformation.

RADIOMICS APPROACH 4: FEATURE ANALYSES

- The issues related to the extracted features
 - Number of features: in the order of 10th, 100th, and 1000th.
 - Nature of features: similar or correlated
 - Small data set compared to feature number: over fit to models

- **Feature selection**
 - To minimize the number of features for decision models
 - use machine-learning (or deep-learning) algorithms

- **Feature classification**
 - To build a model which classifies input features into corresponding output endpoint(s)
 - use machine-learning (or deep learning) algorithms

RADIOMICS APPLICATIONS IN RADIATION THERAPY

- Processes in RT
 - Diagnosis
 - Simulation
 - Planning
 - Localization
 - Treatment
 - Assessment
 - Quality assurance

- AI/Radiomics applications
 - Computer-aided diagnosis, etc.
 - Low-dose imaging/Prediction
 - Auto-segmentation/planning
 - Imaging/analysis
 - Optimization/tracking
 - Outcome modeling and prediction
 - Automation

-To address the most complex challenges across every RT function and process, we need to combine radiomics/AI technology and human clinical expertise.
CLASSIFICATION OF NSCLC HISTOLOGY FROM RADIOMICS

Example for feature classification – supervised training

- 43 radiomics features
- Logistic Regression Modeling w/ LASSO Regularization
- 31 Patient Cohort
- 50 Bootstrapped Models of 10 fold CV each
- ROC Curve / AUC

FEATURE CLASSIFICATION: QUANTUM LANGEVIN CLUSTERING

An example of unsupervised training for feature classification:

- Map radiomics feature vectors, \mathbf{x}_i, to a function space, $\mathcal{H}(\mathbf{x})$
- Inversely search for corresponding Potential Function, $V(\mathbf{x})$, as “clustered wells”
 - Satisfies the Schrödinger Equation with solution for $\psi(\mathbf{x})$
- Propagate feature vectors through $V(\mathbf{x})$ via Langevin dynamics

Step I

$\mathbf{x} = \psi(\mathbf{x}_i) \Rightarrow \psi = \mathcal{H}(\mathbf{x}_i)$

Step II

$\mathbf{c} = \mathcal{F}(\mathbf{x}_i)$

Step III

$\gamma = \mathcal{G}(\mathbf{x}_i)$

Lafata et al - Quarterly of Applied Mathematics 2018

CORRELATION BETWEEN RADIOMICS DATA AND FEV1

A significant correlation was found between radiomics data and lung function (FEV1)

Feature Space:

- 65 patients
- 39 features from segmented lung volume

Lafata et al Scientific Reports 2019

PREDICTING TREATMENT OUTCOME BY PRE-TREATMENT CT

Image acquisition → Image segmentation → GTV

Post-SBRT Cancer Recurrence

Feature analysis → Image feature extraction

Association of pre-treatment radiomic features with lung cancer recurrence following SBRT

Lafata et al 2019 PMB

OUTCOME PREDICTION USING DELTA-RADIOMIC FEATURES

Investigate machine learning methods in delta-radiomic feature analysis for patients with recurrent malignant gliomas using concurrent SRS and bevacizumab treatment,

- Effectiveness for predicting overall survival (OS)
- Effectiveness for feature selection and building classification models

Wang et al JRSRBT 2018

Chang et al PLOS One 2019

AUC data indicated:

- Delta data performed better than single time point data
- Delta after 1 week performed better than data after two months
- Combinations of (RF-selector/KSVM-classifier) and (RF-selector/NN-classifier) showed the highest AUCs

Chang et al PLOS One 2019
RADIOGENOMICS: HYBRID BIOMARKERS FOR PREDICTING LUNG CANCER PATIENT SURVIVAL

Radiogenomic data detailing the information collected from 24 cases as part of treatment response assessment.

FEATURE EXTRACTION: REPRODUCIBILITY/CONSISTENCY

- **Issues**
 - Different modalities and different parameters are used for imaging and reconstruction
 - Different software packages are available for feature extraction with the same names but different calculation methods, etc.

- **Solutions**
 - Reproducibility check for imaging systems: a phantom is scanned by different units and features are calculated using the same software package
 - Consistency check for different software packages: digital phantoms are used for feature calculation using different software packages

PHANTOMS FOR RADIOMICS REPRODUCIBILITY

- Testing for reproducibility radiomics features – as the fundamental requirement for generalizability of radiomics-based clinical prediction models
- Three phantoms: 1) Catphan 700, 2) COPD Gene Phantom II, 3) Triple modality 3D Abdominal Phantom
- Three Dutch medical centers
- Three CT scanners: two from Siemens, one from Philips
- CT scanner details and image acquisition parameters for baseline scans were tabulated
- Data are publically available

CHARACTERIZING INCONSISTENCIES AMONG RADIOMICS EXTRACTION TOOLBOXES USING DIGITAL PHANTOMS

- Three toolboxes:
 - CERR (Computational Environment for Radiological Research)
 - IBEX (imaging biomarker explorer)
 - In-house radiomics platform
- Workflow for evaluating consistencies

FEATURE EXTRACTION: REPRODUCIBILITY/CONSISTENCY

- **Issues**
 - Different modalities and different parameters are used for imaging and reconstruction
 - Different software packages are available for feature extraction with the same names but different calculation methods, etc.

- **Solutions**
 - Reproducibility check for imaging systems: a phantom is scanned by different units and features are calculated using the same software package
 - Consistency check for different software packages: digital phantoms are used for feature calculation using different software packages

PHANTOMS FOR RADIOMICS REPRODUCIBILITY

- Testing for reproducibility radiomics features – as the fundamental requirement for generalizability of radiomics-based clinical prediction models
- Three phantoms: 1) Catphan 700, 2) COPD Gene Phantom II, 3) Triple modality 3D Abdominal Phantom
- Three Dutch medical centers
- Three CT scanners: two from Siemens, one from Philips
- CT scanner details and image acquisition parameters for baseline scans were tabulated
- Data are publically available

CHARACTERIZING INCONSISTENCIES AMONG RADIOMICS EXTRACTION TOOLBOXES USING DIGITAL PHANTOMS

- Three toolboxes:
 - CERR (Computational Environment for Radiological Research)
 - IBEX (imaging biomarker explorer)
 - In-house radiomics platform
- Workflow for evaluating consistencies

PHANTOMS FOR RADIOMICS REPRODUCIBILITY

- Testing for reproducibility radiomics features – as the fundamental requirement for generalizability of radiomics-based clinical prediction models
- Three phantoms: 1) Catphan 700, 2) COPD Gene Phantom II, 3) Triple modality 3D Abdominal Phantom
- Three Dutch medical centers
- Three CT scanners: two from Siemens, one from Philips
- CT scanner details and image acquisition parameters for baseline scans were tabulated
- Data are publically available

CHARACTERIZING INCONSISTENCIES AMONG RADIOMICS EXTRACTION TOOLBOXES USING DIGITAL PHANTOMS

- Three toolboxes:
 - CERR (Computational Environment for Radiological Research)
 - IBEX (imaging biomarker explorer)
 - In-house radiomics platform
- Workflow for evaluating consistencies

PHANTOMS FOR RADIOMICS REPRODUCIBILITY

- Testing for reproducibility radiomics features – as the fundamental requirement for generalizability of radiomics-based clinical prediction models
- Three phantoms: 1) Catphan 700, 2) COPD Gene Phantom II, 3) Triple modality 3D Abdominal Phantom
- Three Dutch medical centers
- Three CT scanners: two from Siemens, one from Philips
- CT scanner details and image acquisition parameters for baseline scans were tabulated
- Data are publically available

CHARACTERIZING INCONSISTENCIES AMONG RADIOMICS EXTRACTION TOOLBOXES USING DIGITAL PHANTOMS

- Three toolboxes:
 - CERR (Computational Environment for Radiological Research)
 - IBEX (imaging biomarker explorer)
 - In-house radiomics platform
- Workflow for evaluating consistencies

PHANTOMS FOR RADIOMICS REPRODUCIBILITY

- Testing for reproducibility radiomics features – as the fundamental requirement for generalizability of radiomics-based clinical prediction models
- Three phantoms: 1) Catphan 700, 2) COPD Gene Phantom II, 3) Triple modality 3D Abdominal Phantom
- Three Dutch medical centers
- Three CT scanners: two from Siemens, one from Philips
- CT scanner details and image acquisition parameters for baseline scans were tabulated
- Data are publically available

CHARACTERIZING INCONSISTENCIES AMONG RADIOMICS EXTRACTION TOOLBOXES USING DIGITAL PHANTOMS

- Three toolboxes:
 - CERR (Computational Environment for Radiological Research)
 - IBEX (imaging biomarker explorer)
 - In-house radiomics platform
- Workflow for evaluating consistencies

PHANTOMS FOR RADIOMICS REPRODUCIBILITY

- Testing for reproducibility radiomics features – as the fundamental requirement for generalizability of radiomics-based clinical prediction models
- Three phantoms: 1) Catphan 700, 2) COPD Gene Phantom II, 3) Triple modality 3D Abdominal Phantom
- Three Dutch medical centers
- Three CT scanners: two from Siemens, one from Philips
- CT scanner details and image acquisition parameters for baseline scans were tabulated
- Data are publically available

CHARACTERIZING INCONSISTENCIES AMONG RADIOMICS EXTRACTION TOOLBOXES USING DIGITAL PHANTOMS

- Three toolboxes:
 - CERR (Computational Environment for Radiological Research)
 - IBEX (imaging biomarker explorer)
 - In-house radiomics platform
- Workflow for evaluating consistencies
CHARACTERIZING INCONSISTENCIES AMONG RADIOMICS EXTRACTION TOOLBOXES USING DIGITAL PHANTOMS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Percentage of score categories in CCC pair-comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percentage of score categories in CCC pair-comparison</td>
</tr>
<tr>
<td></td>
<td>Percentage of score categories in CCC pair-comparison</td>
</tr>
<tr>
<td></td>
<td>Percentage of score categories in CCC pair-comparison</td>
</tr>
<tr>
<td></td>
<td>Percentage of score categories in CCC pair-comparison</td>
</tr>
<tr>
<td></td>
<td>Percentage of score categories in CCC pair-comparison</td>
</tr>
<tr>
<td></td>
<td>Percentage of score categories in CCC pair-comparison</td>
</tr>
</tbody>
</table>

61 features typically extracted from three radiomics toolboxes

Features with Pearson correlation lower than 0.95

SUMMARY

- Radiomics is an emerging and rapidly developing field, which uses extracted radiographic features as biomarkers for disease diagnosis, prediction and treatment assessment
- Applications of radiomics in radiation oncology have demonstrated some encouraging results for treatment prediction and assessment
- Quality assurance for applying radiomics and/or radiogenomics to evaluate clinical outcomes is essential

ACKNOWLEDGEMENTS

Duke Faculty:
- Kyle Lafata, PhD
- Zheng Chang, PhD
- Chunshao Wang, PhD
- Chris Kelsey, MD
- John Kirkpatrick, MD, PhD
- Yunfeng Cui, PhD
- Jackie Wu, PhD
- Lei Ren, PhD
- Jordan Torok, MD
- Chris Willett, MD
- David Brizel, MD
- Yvonne Mowery, MD, PhD

Students:
- Yushi Chang, MS
- Xiaoyu Duan, MS
- Ruiqi Geng, MS
- Zhenyu Yang, MS
- Yin Gao, MS
- Yuxin Chen, MS
- Nathan Shaffer, BS
- Wenzheng Sun, PhD

Other collaborators:
- Jian-guo Liu, PhD
- Zhennan Zhou, PhD
- Jing Cai, PhD
- Julian Hong, MD, MS
- Bradley O. Ackerson, MD
- Betty Tang, MD
- Michael Corradetti, MD, PhD
- Ying Xiao, PhD
- Duke Wige Center
- Duke Kunshan University

And others whose names may not be listed

THANK YOU FOR YOUR ATTENTION