# APPLICATIONS AND CHALLENGES USING RADIOMICS FOR RADIATION THERAPY TREATMENT ASSESSMENT

FANG-FANG YIN, DUKE UNIVERSITY AAPM 2020 VIRTUAL ANNUAL MEETING 07-15-2020



# Varian Medical Systems: research grants Duke Kunshan University: professor



- Actuating
  Actuating
  Converts medical images into high-dimensional quantitative features
  Analyzes combined features with other patient data to provide clinical decision
  support. It has been investigated for
  Evaluating tumor prognostic or predictive abilities
  Stratification of tumor histology or stages
  Describing the relationship between images and clinical outcomes
  Association with underlying gene expression patterns
- Advantages: Noninvasive
  - Individualized
  - Low cost
  - Potentially routine procedure

| ince  | r (2012)     |  |
|-------|--------------|--|
| o. 5, | 13087 (2015) |  |

-11

Parmar et al. Sci. Rej

1



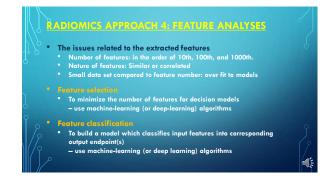
# • Potential variations in imaging for radiomics feature calculation: • Different imaging modalities (such as MRI, CT, PET, etc.) • Different imaging units (different CTs used in a hospital, etc.)

- Different imaging parameters and dates used in the same imaging modality
- Different reconstruction methods/parameters (i.e., CT/CBCT, MRI)
- Different calculated datasets from 4D CT dataset (MIP, inhale, AvelP ...)

- Data harmonization minimizes variations between image data sets and should be done before any application

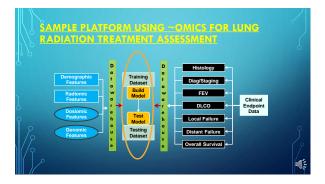
- Whole imageRegion-of-interest (ROI):
  - tumor, lung, a specific structure/organ, or a volume inside lung as shown in figures
- Feature values could be very different if ROIs) using different ROIs
  - Accurate image segmentation is very critical: manual, automatic, and semiautomatic segmentation

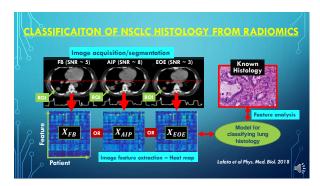
Software packages used for feature calculation should be validated!

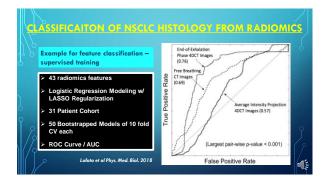

- Typical four feature groups: Intensity: estimate the first order statistics of the intensity histogram Shape: describe the 3D geometric properties of the tumor (or ROIs)
- Textural features: quantify the intra-tumor heterogeneity. They can be derived from the gray level co-occurrence matrix (GLCM) and gray-level run length matrix (GLRLM), etc., averaging over all thirteen directions (fig)

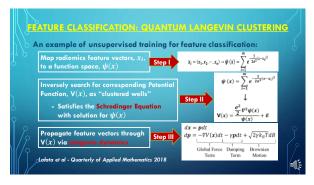


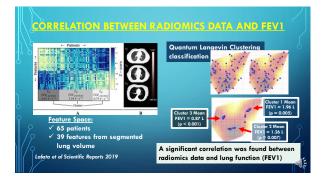
Way elet features: transform domain representations of the intensity and textural features - They can be computed on different wavelet decompositions of the original image using a coiflet wavelet transforma

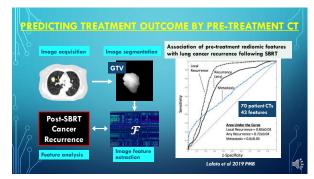

Parmar et al. Sci. Rep. 5, 13087 (2015)


E1 a





| <ul> <li>Build a dec<br/>learning m</li> </ul> | ision model using mach              | classification<br>actual<br>acrosym     | Classification method<br>name                                   | Feature<br>Selection<br>method<br>acronym | Feature selection method name                  |
|------------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------------------------------|-------------------------------------------|------------------------------------------------|
| iouning in                                     | cinio a ci                          | Net                                     | Neural network                                                  | RELF                                      | Relief                                         |
| Input                                          |                                     | DT                                      | Decision Tree                                                   | PSCR                                      | Fisher score                                   |
| features                                       | 🛶 ( Model )🛶 Outcom                 | es asr                                  | Boosting                                                        | GINI                                      | Gini index                                     |
|                                                |                                     | BY                                      | Bayesian                                                        | CHISQ                                     | Chi-square score                               |
|                                                | f{xi} 0                             | BAG                                     | Bagging                                                         | JMI                                       | Joint matual information                       |
|                                                | ing training/validation             | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Random Forset                                                   | CIFE                                      | Conditional infomax feature<br>extraction      |
| (Training Us                                   | ang maining/valiaation              | MARS                                    | Malti adaptive regression<br>splittes                           | DISR                                      | Double input symmetric relevance               |
|                                                | 0 00 11                             | SVM                                     | Support vector machines                                         | MIM                                       | Matual information maximization                |
|                                                | $O = f\{xi\}$                       | DA                                      | Discriminant analysis                                           | CMIN                                      | Conditional mutual information<br>maximization |
| (Testing using                                 | ng test data to evaluate            | the NN                                  | Netrot neighbour                                                | ICAP                                      | Interaction capping                            |
| trained mod                                    |                                     | GLM                                     | Generalized linear models                                       | TSCR                                      | T-test score                                   |
|                                                |                                     | PLSR                                    | Partial least squares and<br>prinicipal component<br>regression | MIRME                                     | Minimum relandancy maximum<br>relevance        |
| <ul> <li>Evaluation</li> </ul>                 |                                     | -                                       | -                                                               | MIFS                                      | Mutual information feature<br>selection        |
| 🖓 🛛 Area under                                 | ROC curve (AUC)                     | -                                       | -                                                               | WLCX                                      | Wilcoson                                       |
| Parmar,                                        | C. et al. Sci. Rep. 5, 13087 (2015) | 12 mag                                  | hine-learnin:                                                   | g sele                                    | ctors/classifiers                              |


# **AI/Radiomics applications** Processes in RT DiagnosisSimulation Low-dose imaging/Prediction Auto- segmentation/planning Imaging/analysis Treatment Optimization/tracking Outcome modeling and prediction Quality assurance • Automation To address the most complex challenges across every RT function and process, we need to combine radiomics/AI technology and human clinical expertise É.



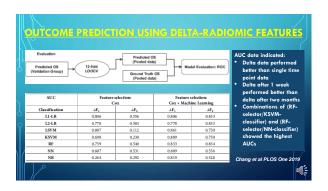




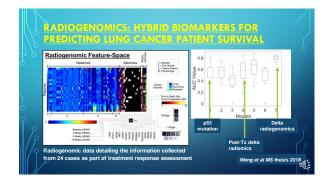







- Anvestigate machine learning methods in delta-radiomic feature analysis for patients with recurrent malignant gliomas using concurrent SRS and bevacizumab treatment, \* Effectiveness for predicting overall survival (OS) \* Effectiveness for feature selection and building classification models
- Effectiveness for feature selection and building classification models


   Ortuation
   Ortuatio
   Ortuation
   Ortuation
   Ortuation
   Ortuation
   Ortuat

Wang et al JRSBRT 2018 Chang et al PLOS One 2019

Features



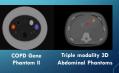
1



# REATURE EXTRACTION: REPRODUCIBILITY/CONSISTENCY

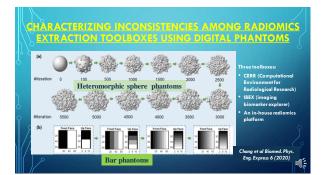
- Different modalities and different parameters are used for imaging and reconstruction
- Different software packages are available for feature extraction with the same names but different calculation methods, etc.

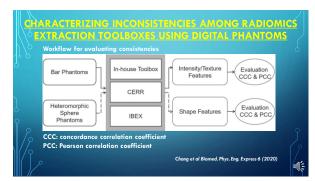
# Solutions


- Reproducibility check for imaging systems: a phantom is scanned by different units and features are calculated using the same software package
- Consistency check for different software packages: digital phantoms are used for feature calculation using different software packages

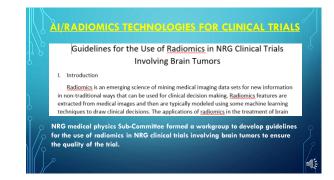
Testing for reproducibility radiomics features – as the fundamenta for generalizability of radiomics-based clinical prediction models • Three phantoms: 1) Catphan 700, 2) COPD Gene Phantom II, a) Triple modelity 3D Abdominal Phantom • Three Duth medical centers • Three CT scanners: two from Siemens one from Philips

lis et al.: CT p


- CT scanner details and image acquisition parameters for baseline scans were tabulated


Data are publically available




| ublic dataset for radiomics Med Phys 2019 |  |
|-------------------------------------------|--|
|                                           |  |

| Sample CT scanner                 | details and i            | mage acquisiti           | on parameters for b                         | aseline scans                                 |
|-----------------------------------|--------------------------|--------------------------|---------------------------------------------|-----------------------------------------------|
| Waineters                         | DICOM tags               | MAASTRO<br>Clinic (MAAS) | Radboud University<br>Medical Center (RADB) | University Medical Center<br>Geoningen (UMCG) |
| Catphan 700/COPDGene Phantom II 8 | suseline scan parameters | 2                        |                                             |                                               |
| Manufacturer                      | (0008, 0070)             | Siemena                  | Phillips                                    | Siemens                                       |
| Model                             | (0008, 1090)             | Biograph 40              | Brilliance Big Bore                         | Biograph 64                                   |
| Software Version                  | (0018, 1020)             | syngo CT 2006A           | 3.6.6                                       | VG80A                                         |
| Siliot thickness (mm)             | (0018, 0050)             | 3                        | 3                                           | 3                                             |
| TUBE VOLTAGE (KV)                 | (1015, 0060)             | 120                      | 120                                         | 80                                            |
| Reconstruction diameter (nm)      | (0018, 1100)             | 500                      | 255                                         | 239                                           |
| Tabe current (mA)                 | (0018, 1151)             | 39                       | 134                                         | 149                                           |
| EXPOSURE (mAs)                    | (0018, 1152)             | 24                       | 124                                         | 53                                            |
| Convolution kernel                | (0018, 1210)             | B31f                     | в                                           | 1307                                          |
| Rows                              | (9028, 0000)             | 512                      | 1024                                        | 512                                           |
| Columes                           | (0028, 0011)             | 512                      | 8024                                        | 512                                           |
| Pinel spacing                     | (0028, 0030)             | 0.98                     | 0.25                                        | 0.46                                          |
| Bits stored                       | (0028, 0101)             | 12                       | 12                                          | 12                                            |
| High Nr                           | (0028, 0102)             | 11                       | п                                           | 11                                            |
| Rescale offset                    | (0028, 1052)             | - 1024                   | - 9924                                      | -1024                                         |
| Rescale slope                     | (0028, 1053)             |                          |                                             |                                               |





| HARACTE                                                                                       | <b>RIZIN</b>                        |                                              | ISISTENCI                                                                                                                                                                                                     | ES AMO                                                                                                                                                                            | ONG RA                                                                                          | DIOMIĆ                                                     |
|-----------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| EXTRACT                                                                                       |                                     |                                              |                                                                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                 |                                                            |
| Number                                                                                        | of Features Perfec                  | ctAgreement (CCC = 1) St                     | rong Agreement (CCC > =0.1                                                                                                                                                                                    | 3) Moderate Agreement                                                                                                                                                             | t (0.5 < CCC < 0.8)                                                                             | /eakAgreement (OCC < 0.                                    |
| CC(IH/CERR)                                                                                   | 5                                   | 52.7%                                        | 70.9%                                                                                                                                                                                                         | 34                                                                                                                                                                                | 6%                                                                                              | 25,5%                                                      |
| CCC(IH/IBEX) 3                                                                                |                                     | 45.2%                                        | 61.3%                                                                                                                                                                                                         | 0                                                                                                                                                                                 | 56                                                                                              | 38.7%                                                      |
|                                                                                               |                                     |                                              |                                                                                                                                                                                                               |                                                                                                                                                                                   |                                                                                                 | 38.7%                                                      |
| CC(CERR/IBEX)                                                                                 |                                     | sum<br>egories in CC                         | 61.3%<br>C pair-compari<br>FeatureName                                                                                                                                                                        | son.                                                                                                                                                                              | s key source                                                                                    | es of                                                      |
|                                                                                               |                                     | egories in CC                                | C pair-compari                                                                                                                                                                                                | son.                                                                                                                                                                              | -                                                                                               | es of                                                      |
| CC(CERR/IBEX) 3<br>Percentage of se                                                           | core cate                           | egories in CC                                | C pair-compari<br>Feature Name<br>Variation Of Intensity<br>Differential Entropy                                                                                                                              | SON.<br>PCC<br>-0.735<br>-0.387                                                                                                                                                   | 3 key source                                                                                    | es of<br>:                                                 |
| CCC(CERR/IBEX) 3                                                                              | core cate                           | egories in CCO<br>Toolbass<br>Ilfversus CERR | C pair-compari<br>Feature Name<br>Variation Of Intensky<br>Differential Intropy<br>Info Measure Correlation 1                                                                                                 | SON.<br>PCC<br>-0.735<br>-0.387<br>0.452                                                                                                                                          | 3 key source<br>discrepancy<br>1. Mathem                                                        | es of<br>:<br>atical                                       |
| Percentage of so<br>61 features typi                                                          | core cate                           | egories in CCO<br>Toolbass<br>Ilfversus CERR | C pair-compari<br>Feature Name<br>Variation Of Intensity<br>Differential Entropy                                                                                                                              | SON.<br>PCC<br>-0.735<br>-0.387<br>0.452<br>-0.735<br>-0.735                                                                                                                      | 3 key source<br>discrepancy<br>1. Mathem<br>definitio                                           | es of<br>:<br>atical<br>ns                                 |
| Percentage of so<br>61 features typi<br>extracted from                                        | core cate<br>cally<br>three         | egories in CCC                               | C pair-compari<br>Feature Name<br>Variation Of Intensky<br>Differential Intropy<br>Iafo Maxime Correlation I<br>Variation Of Intensky<br>Compensity                                                           | PCC         C           -0.735         C           -0.387         L           -0.735         -0.331           -0.311         -0.114                                               | 3 key source<br>discrepancy<br>1. Mathem<br>definitio                                           | es of<br>:<br>atical                                       |
| Percentage of so<br>61 features typi                                                          | core cate<br>cally<br>three         | egories in CCO<br>Toolbass<br>Ilfversus CERR | C pair-compari<br>Feature Name<br>Variadon Of Intensky<br>Differential Intropy<br>Info Measure Correlation 1<br>Variadon Of Intensky<br>Coameness<br>Complexity<br>Differential Intropy                       | SON.<br>PCC<br>-0.735<br>-0.387<br>-0.387<br>-0.735<br>-0.735<br>-0.381<br>-0.114<br>-0.386                                                                                       | 3 key source<br>discrepancy<br>1. Mathem<br>definitio<br>2. Pre-proc                            | es of<br>::<br>atical<br>ns<br>essing steps                |
| Percentage of so<br>61 features typi<br>extracted from                                        | core cate<br>cally<br>three         | egories in CCC                               | C pair-compari<br>Feature Name<br>Variation Of Intensky<br>Differential Entropy<br>Info Manare Correlation 1<br>Variation Of Intensky<br>Complexity<br>Differential Entropy<br>Info Manare Correlation 1      | PCC         C           -0.735         C           -0.387         L           -0.735         -0.331           -0.311         -0.114                                               | 3 key source<br>discrepancy<br>1. Mathem<br>definitio<br>2. Pre-proc                            | es of<br>:<br>atical<br>ns                                 |
| ACCICERRY THEREN<br>Percentage of so<br>61 features typi<br>extracted from<br>radiomics toolb | core cate<br>cally<br>three<br>oxes | egories in CCC                               | C pair-compari<br>Feature Name<br>Variadon Of Intensky<br>Differential Intropy<br>Info Measure Correlation 1<br>Variadon Of Intensky<br>Coameness<br>Complexity<br>Differential Intropy                       | PCC         -0.735           -0.735         -0.387           -0.735         -0.381           -0.735         -0.381           -0.114         -0.386           0.479         -0.387 | 3 key source<br>discrepancy<br>1. Mathem<br>definitio<br>2. Pre-proc                            | es of<br>:<br>atical<br>ns<br>essing steps<br>to toolboxes |
| Percentage of so<br>61 features typi<br>extracted from                                        | core cate<br>cally<br>three<br>oxes | egories in CCC                               | C pair-compari<br>TestureName<br>VariadionOfinensiby<br>Differential Intropy<br>Info Measure Correlation<br>VariadionOfInensiby<br>Coaperaty<br>Differential Intropy<br>Info Measure Correlation 1<br>Buryens | PCC         -0.735           -0.735         -0.387           -0.735         -0.381           -0.735         -0.381           -0.114         -0.386           0.479         -0.387 | 3 key source<br>discrepancy<br>1. Mathem<br>definitio<br>2. Pre-proc<br>inherent<br>3. Differen | es of<br>:<br>atical<br>ns<br>essing steps<br>to toolboxes |



- Radiomics is an emerging and rapidly developing field, which uses extracted radiographic features as biomarkers for disease diagnosis, prediction and treatment assessment
- Applications of radiomics in radiation oncology have demonstrated some encouraging results for treatment prediction and assessment
- Quality assurance for applying radiomics and/or radiogenomics to evaluate clinical outcomes is essential



```
Duke Faculty:
Duke Faculty:
Kyle Lafate, PhD
Zheng Chang, PhD
Chunhao Wang, PhD
Chunhao Kirkyetrick, MD, PhD
Yunfeng Cui, PhD
Jackie Wu, PhD
Lei Ren, PhD
Jordan Torok, MD
Chris Willett, MD
 David Brizel, MD
 Yvonne Mowery, MD, PhD
```

É.

# Students: Yushi Chang, MS Xiaoyu Duan, MS Ruiqi Geng, MS Zhenyu Yang, MS Yin Gao, MS Xinru Chen, MS Nathan Shaffer, BS Wenzheng Sun, PhD Students: Other collaborators:

Other collaborators; Jian-guo Liu, PhD Zhennan Zhou, PhD Julian Hong, MD, MS Bradley G Ackerson, MD Betty Tong, MD Michael Corradetti, MD, PhD Ying Xiao, PhD Duke Woo Center Duke Kunshan University Duke Kunshan University

É.

And others whose names may not be listed

