VT Ablation with External Beam Radiotherapy

Amanda J. Deisher, Ph.D.

2020 Joint AAMP|COMP Virtual Meeting
July 16, 2020
Outline

- Introduction to Ventricular Tachycardia (VT)
- External beam as an alternative
- Review of recent preclinical and clinical
- Clinical workflow – intensive image guidance
- Heating up: future directions
What is Ventricular Tachycardia (VT)?

- Abnormal electrical signal in ventricles
- Heart rate >100 beats per minute
- Symptoms:
 - Dizziness, shortness of breath, lightheadedness, palpitations, chest pain
 - Loss of consciousness
 - Cardiac arrest (sudden death)
- Estimated 180K-450K sudden cardiac deaths/yr in US*

Current VT Treatment Paradigm

- Implanted Cardioverter Defibrillator (ICD)
 - 10K/month implanted in US*
- Antiarrhythmic medication
- Recurrent VT → VT Ablation
 - Source identification
 - Anatomic Substrate Imaging: MR, CT
 - Electrical mapping
 - Invasive electroanatomic mapping
 - 12-lead Holter monitoring
 - Body surface mapping (ECGi)
 - Catheter-based treatment w/challenges
 thickness of LV wall

Cather-based VT Treatment Outcomes

External Beam Radiation as an Alternative

• Advantages
 • Non-invasive
 • Fast
 • Homogeneous dose to any volume

• Challenges
 • Target definition
 • Respiratory and cardiac motion
 • Delay to effect
 • Proximity to critical normal structures

• Choice of external beam
 • X-rays
 • Particle beams (protons, carbon, …)
(Some) Preclinical Data

• Can focused radiation create a isolated lesion in cardiac tissue?

 CyberHeart™ in intact porcine model Sharma, A. et al. Non-invasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium. *Heart Rhythm* 2010 (7) 802-810.

• If the lesion includes an AV node, is there a dose that creates AV block?

 External beam radiation delivered in a single fraction of ≥25 Gy causes electrophysical and structural myocardial ablation effects.

• If we target the left ventricle, what is the effect on cardiac tissue and function?

...
Left ventricle lesion development

Twelve week follow-up of animal with 3 targets/40 Gy

Macroscopic pathology at 12 weeks

12-wk MR + def. dose

Lesion Border

Lesion Endocardium

Lesion Core

Dose Response: LVEF after 100 days

Two groups with different LV myocardium doses

- **High dose:** 3 targets to 40 Gy
- **Low dose:** 1 target to 30 or 40 Gy, 2 targets to 30 Gy

\[\Delta \text{LVEF vs. } V_{20\text{Gy}} = -0.66 \ (p = 0.01) \]

Recent Clinical Data: VT ablation with photons

Clinical Workflow – Motion Management Strategy

- Respiratory motion:
 - Image & treat at end-expiration

- Cardiac motion:
 - Planning:
 - Cardiac ITV
 - 4D dose calculation
 - Delivery: Repaint the target

Foundation of every radiation oncology study:

Deliver the planned dose to the planned location
Clinical Workflow - Intensive Image Guidance

Target Definition

- Non-contrast respiratory 4DCT
- Non-contrast cardiac 4DCT (end-exhale)
- Contrast cardiac 4DCT (end-exhale)
- Delayed Contrast MR
- Previous Electroanatomical Mapping
- Current ECGi

Day of Treatment

- 2D/3D matching to bones and ICD leads
- Volumetric imaging (gated CBCT or 4DCT)
- Fluorography confirmation of ICD leads during respiratory and cardiac cycles

Follow-up

- Delayed Contrast MR to monitor lesion development and LVEF changes
Heating Up: Future Directions

- Several open questions for VT ablation
 - Mechanism of effect
 - Duration of effect
 - Risk to adjacent myocardium

- Preclinical work and clinical trials will both play a part

- Opportunity for innovation
 - Improved workflows for integrating EP and RadOnc systems
 - Cardiac gating
 - Increased image-guidance capabilities
 - 4D – dose calculation

Goal: Develop a safe, effective non-invasive treatment for cardiac arrhythmia