Russell C. Rockne Ph.D.

• Assistant professor
• Director, Division of Mathematical Oncology

• Ph.D. Applied Mathematics, University of Washington, Seattle

• Mathematical Modeling of:
 – Cancer progression, response to therapy
 – Medical imaging (MRI, PET)
 – Radiation therapy

• Focus: translation of mathematics into the clinic
Optimizing treatment with radionuclide therapy and immunotherapy

Russell C. Rockne
Asst. Professor, Director, Division of Mathematical Oncology
Department of Computational and Quantitative Medicine
Beckman Research Institute, City of Hope
OUTLINE

• What is radioimmuno therapy (RIT)
• What is CAR T-cell immunotherapy

• Combination therapies and challenges of RIT + CAR T-cell immunotherapy

• Mathematical modeling to address challenges of combo therapy
 – Mathematical models can incorporate:
 • RIT decay, dose, tumor response, toxicity constraints
 • CAR T cell effect, proliferation, exhaustion
 • Provide a framework to optimize: dose, sequence, timing
 • Make predictions and give dynamic quantifications of response

• Examples of mathematical modeling and analysis of:
 – 225Ac, 177Lu RIT + CAR T cells in preclinical multiple myeloma model
Radio-immunotherapy (RIT)

- Targeted Radionuclide therapy with antibodies (Ab)
- Renewed interest in alpha emitters in RIT (αRIT), ex. 225Ac

αRIT is high LET radiation

Chimeric Antigen Receptor (CAR) T-cell Therapy

Combination therapies in cancer

• Combination therapy approaches are challenging:

 – How to determine Dose, timing, sequence of therapies is not clear

• RIT and CAR Ts are a new, potentially important combo therapy, however this presents unique challenges:

 □ αRIT – radiobiology, toxicity

 – CAR Ts – nonstandard PK/PD, living therapy with cell dynamics and kinetics

• Mathematical modeling can help address these challenges
Multiple Myeloma

Estimated New Cases in 2020: 32,270
% of All New Cancer Cases: 1.8%

Estimated Deaths in 2020: 12,830
% of All Cancer Deaths: 2.1%

5-Year Relative Survival: 53.9%
2010–2016

Death Rate per 100,000 Persons by Race/Ethnicity & Sex: Myeloma

U.S. 2013–2017, Age-Adjusted

Percent of New Cases by Age Group: Myeloma

Myeloma is most frequently diagnosed among people aged 65–74.
Median Age At Diagnosis: 69
Daratumumab (Darzalex, Dara)

- CD38 is a multifunctional ectoenzyme which is essential for the regulation of intracellular Ca^{2+} and subsequent signal transduction.

- Daratumumab (Dara), is a human anti-CD38 IgG_{1} (κ subclass) antibody against the receptor CD38, is now considered the last FDA approved treatment option for MM patients at relapse.

- Since CD38 is a highly expressed surface protein on PCs, the main anti-MM effect of Dara has been attributed to its associated antibody-dependent cellular cytotoxicity (ADCC), complement dependent cellular cytotoxicity (CDC), and antibody-dependent cellular phagocytosis activities (Phipps et al., 2015).

- Clinical results obtained with Dara have been impressive (Dimopoulos, 2016), but unfortunately most MM patients relapse.

Multiple Myeloma is a disseminated disease

We want the model to capture
• **Effect of cell kill of radiation**
• **Decay of radionuclide**
• **Proliferation of tumor cells**
• **Clearance of dead cells from system**

Consider the hazard function
\[
\frac{dSF}{dt} = -h(t)SF(D(t))
\]

Lea-Catcheside Dose protraction factor
\[
h(t) = \alpha R_0 e^{-\lambda_p t} + \frac{2\beta R_0^2}{\gamma - \lambda_p} \left(e^{-2\lambda_p t} - e^{-(\lambda_p + \gamma)t} \right)
\]

Mathematical modeling: RIT

We want the model to capture
- Effect of cell kill of radiation
- Decay of radionuclide
- Proliferation of tumor cells
- Clearance of dead cells from system

\[
\frac{dV_T}{dt} = \rho V_T - k_{Rx} V_t \\
k_{Rx} = \alpha R_0 e^{-\lambda_p t} + \frac{2\beta R_0^2}{(\gamma - \lambda_p)} (e^{-2\lambda_p + \gamma} t) \gamma \lambda_p \\
\frac{dV_R}{dt} = k_{Rx} V_T - k_{cl} V_R
\]

<table>
<thead>
<tr>
<th>parameter</th>
<th>description</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>Tumor cell proliferation rate</td>
<td>time(^{-1})</td>
</tr>
<tr>
<td>(k_{Rx})</td>
<td>Rate of tumor cells being irradiated</td>
<td>time(^{-1})</td>
</tr>
<tr>
<td>(k_{cl})</td>
<td>Clearance rate of irradiated tumor cells</td>
<td>time(^{-1})</td>
</tr>
</tbody>
</table>

Mathematical modeling: RIT

We want the model to capture
- Effect of cell kill of radiation
- Decay of radionuclide
- Proliferation of tumor cells
- Clearance of dead cells from system

\[
\begin{align*}
\frac{dV_T}{dt} &= \rho V_T - k_{Rx} V_t \\
\alpha R_0 e^{-\lambda_p t} + \frac{2\beta R_0^2}{(\gamma - \lambda_p)} \left(e^{-2\lambda_p t + \gamma t} \right) \gamma \lambda_p \\
\frac{dV_R}{dt} &= k_{Rx} V_T - k_{cl} V_R
\end{align*}
\]

A. \(R_0 \)
B. \(\alpha \)
C. \(\rho \)
D. \(k_{cl} \)
225Ac-DOTA vs 177Lu-DOTA-Daratumumab

225Ac-DOTA vs 177Lu-DOTA-Daratumumab

CAR T-cell Predator-Prey Mathematical Model

\[
\frac{dV}{dt} = \rho V \left(1 - \frac{V}{K}\right) - \kappa_1 VC
\]

\[
\frac{dC}{dt} = \kappa_2 VC - \theta C
\]

\(V(t)\): tumor cells
\(C(t)\): CAR T–cells

<table>
<thead>
<tr>
<th>parameter</th>
<th>description</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>cancer cell net growth rate</td>
<td>day(^{-1})</td>
</tr>
<tr>
<td>(K)</td>
<td>carrying capacity</td>
<td>cell</td>
</tr>
<tr>
<td>(\kappa_1)</td>
<td>CAR T-cell killing rate</td>
<td>day(^{-1}) cell(^{-1})</td>
</tr>
<tr>
<td>(\kappa_2)</td>
<td>net rate of proliferation and exhaustion of CAR T-cells when stimulated by cancer cells</td>
<td>day(^{-1}) cell(^{-1})</td>
</tr>
<tr>
<td>(\theta)</td>
<td>CAR T-cell death rate (persistence)</td>
<td>day(^{-1})</td>
</tr>
</tbody>
</table>

CAR T-cell model potential PK/PD

CAR T-cell killing dynamics

CAR T-cell + αRIT Combination therapy in MM

1. Unpublished data.
CAR T-cell + αRIT Combination therapy in MM

\[
\frac{dV_T}{dt} = \rho V_T - \delta(t - \tau_{Rx})k_{Rx}V_R - \delta(t - \tau_C)\kappa_1 V_T C
\]

\[
\frac{dV_R}{dt} = \delta(t - \tau_{Rx})(k_{Rx}V_R - k_{cl} V_R) - \delta(t - \tau_C)\kappa_1 V_R C
\]

\[
\frac{dC}{dt} = \kappa_2 (V_T + V_R)C - \theta C
\]
Summary

• Combination therapies and challenges of RIT + CAR T-cell immunotherapy

• Mathematical modeling to address challenges of combo therapy
 – Mathematical models can incorporate:
 – RIT decay, dose, tumor response, toxicity constraints
 – CAR T cell effect, proliferation, exhaustion
 – Provide a framework to optimize: dose, sequence, timing
 – Make predictions and give dynamic quantifications of response
Thank you

Flavia Pichiorri, John Shively, Megan Minnix, Amrita Krishnan, Joycelynne Palmer, Vikram Adhikarla

Christine Brown, Behnam Badie, Russell Rockne, Michael Barish, Prativa Sahoo, Xin (Cindy) Yang