# Russell C. Rockne Ph.D.

- Assistant professor
- Director, Division of Mathematical Oncology
- Ph.D. Applied Mathematics, University of Washington, Seattle
- Mathematical Modeling of:
  - Cancer progression, response to therapy
  - Medical imaging (MRI, PET)
  - Radiation therapy
- Focus: translation of mathematics into the clinic









### Optimizing treatment with radionuclide therapy and immunotherapy

#### Russell C. Rockne

Asst. Professor, Director, Division of Mathematical Oncology Department of Computational and Quantitative Medicine Beckman Research Institute, City of Hope



### OUTLINE

- What is radioimmuno therapy (RIT)
- What is CAR T-cell immunotherapy
- Combination therapies and challenges of RIT + CAR T-cell immunotherapy
- Mathematical modeling to address challenges of combo therapy
  - Mathematical models can incorporate:
    - RIT decay, dose, tumor response, toxicity constraints
    - CAR T cell effect, proliferation, exhaustion
    - Provide a framework to optimize: dose, sequence, timing
    - Make predictions and give dynamic quantifications of response
- Examples of mathematical modeling and analysis of:
  - <sup>225</sup>Ac, <sup>177</sup>Lu RIT + CAR T cells in preclinical multiple myeloma model



# Radio-immunotherapy (RIT)

- Targeted Radionuclide therapy with antibodies (Ab)
- Renewed interest in alpha emitters in RIT (αRIT), ex. <sup>225</sup>Ac

### $\Box$ $\alpha$ RIT is high LET radiation





- 1. Couturier et al. Cancer radioimmunotherapy with alpha-emitting nuclides. *Eur J Nucl Med Mol Imaging*. 2005;32(5):601–14.
- 2. Agrawal S. The role of 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: Is it the new beginning. *Indian journal of urology : IJU*, 2020;36(1), 69–70.
- 3. Bal et al. Safety and Therapeutic Efficacy of 225Ac-DOTATATE Targeted Alpha Therapy in Metastatic Gastroenteropancreatic Neuroendocrine Tumors Stable or Refractory to 177Lu-DOTATATE PRRT. J Nucl Med. 2020 May 1;61(supplement 1):416.



# **Chimeric Antigen Receptor (CAR) T-cell Therapy**



1. Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25(9):1341–55.



### **Combination therapies in cancer**

- Combination therapy approaches are challenging:
  - How to determine Dose, timing, sequence of therapies is not clear
- RIT and CAR Ts are a new, potentially important combo therapy, however this presents unique challenges:
  - $\Box$   $\alpha$ RIT radiobiology, toxicity
  - CAR Ts nonstandard PK/PD, living therapy with cell dynamics and kinetics
- Mathematical modeling can help address these challenges



### **Multiple Myeloma**



**Multiple Myeloma** 

#### At a Glance









U.S. 2013-2017, Age-Adjusted Percent of New Cases by Age Group: Myeloma



#### http://seer.cancer.gov

SEER 21 2013-2017, All Races, Both Sexes

# Daratumumab (Darzalex, Dara)

- CD38 is a multifunctional ectoenzyme which is essential for the regulation of intracellular Ca<sup>2+</sup> and subsequent signal transduction.
- > Daratumumab (Dara), is a human anti-CD38  $IgG_1$  ( $\kappa$  subclass) antibody against the receptor CD38, is now considered the last FDA approved treatment option for MM patients at relapse.
- ➢ Since CD38 is a highly expressed surface protein on PCs, the main anti-MM effect of Dara has been attributed to its associated antibody-dependent cellular cytotoxicity (ADCC), complement dependent cellular cytotoxicity (CDC), and antibody-dependent cellular phagocytosis activities (Phipps *et al.*, 2015).
- Clinical results obtained with Dara have been impressive (Dimopoulos, 2016), but unfortunately most MM patients relapse.
- 1. Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–31.
- 2. Phipps C, Chen Y, Gopalakrishnan S, Tan D. Daratumumab and its potential in the treatment of multiple myeloma: Overview of the preclinical and clinical development. Ther Adv Hematol. 2015;6(3):120–7.



### Multiple Myeloma is a disseminated disease

<sup>64</sup>Cu-DOTA-Daratumumab PET/CT





1. Adhikarla V, Chaudhry A, Krishnan A, Rockne R, Palmer J, Poku E, et al. Evaluation of a novel radiotracer targeting CD38 receptor expression for imaging multiple myeloma:64Cu-DOTA-Daratumumab. J Nucl Med. 2020 May 1;61(supplement 1):168.



# Mathematical modeling: RIT

We want the model to capture

- Effect of cell kill of radiation
- Decay of radionuclide
- Proliferation of tumor cells
- Clearance of dead cells from system

Consider the hazard function

$$\frac{dSF}{dt} = -h(t)SF(D(t))$$

Lea-Catcheside Dose protraction factor

$$h(t) = \alpha R_0 e^{-\lambda_p t} + \frac{2\beta R_0^2}{\gamma - \lambda_p} \left( e^{-2\lambda_p t} - e^{-(\lambda_p + \gamma)t} \right)$$

 Gong J, Dos Santos MM, Finlay C, Hillen T. Are more complicated tumour control probability models better? Math Med Biol. 2013;30:1–19.

### Good 'Old Linear-Quadratic (LQ)



| parameter   | description                 | unit               |
|-------------|-----------------------------|--------------------|
| α           | Linear Quadradic parameter  | Gy <sup>-1</sup>   |
| β           | Linear Quadradic parameter  | Gy <sup>-2</sup>   |
| $R_0$       | Initial dose rate           | Gy time⁻¹          |
| $\lambda_p$ | Radionuclide decay constant | time <sup>-1</sup> |
| γ           | Cell repair rate constant   | time 1             |

# Mathematical modeling: RIT

We want the model to capture

- Effect of cell kill of radiation
- Decay of radionuclide
- Proliferation of tumor cells
- Clearance of dead cells from system



$$\frac{dV_T}{dt} = \rho V_T - k_{Rx} V_t$$

$$k_{Rx} = \alpha R_0 e^{-\lambda_p t} + \frac{2\beta R_0^2}{(\gamma - \lambda_p)} \left( e^{-2\lambda_p + \gamma)t} \right)$$

$$\frac{dV_R}{dt} = k_{Rx} V_T - k_{cl} V_R$$

| parameter       | description                              | unit               |
|-----------------|------------------------------------------|--------------------|
| ρ               | Tumor cell proliferation rate            | time <sup>-1</sup> |
| k <sub>Rx</sub> | Rate of tumor cells being irradiated     | time <sup>-1</sup> |
| k <sub>cl</sub> | Clearance rate of irradiated tumor cells | time <sup>-1</sup> |

1. Karimian A, Ji NT, Song H, Sgouros G. Mathematical modeling of preclinical alpha-emitter radiopharmaceutical therapy. Cancer Res. 2020;80(4):868–76.

 $\gamma \lambda_p$ 



# Mathematical modeling: RIT

We want the model to capture

- Effect of cell kill of radiation
- Decay of radionuclide
- Proliferation of tumor cells
- Clearance of dead cells from system



$$\frac{dV_T}{dt} = \rho V_T - k_{Rx} V_t$$

$$k_{Rx} = \alpha R_0 e^{-\lambda_p t} + \frac{2\beta R_0^2}{(\gamma - \lambda_p)} \left( e^{-2\lambda_p + \gamma)t} \right) \gamma \lambda_p$$

$$\frac{dV_R}{dt} = k_{Rx}V_T - k_{cl}V_R$$





## <sup>225</sup>Ac-DOTA vs <sup>177</sup>Lu-DOTA-Daratumumab



1. Minnix M, Adhikarla V, Caserta E, Poku E, Rockne R, Shively J, Pichiorri F. Comparison of CD38 targeted alpha- vs beta-radionuclide therapy of disseminated multiple myeloma in an animal model. 2020



### <sup>225</sup>Ac-DOTA vs <sup>177</sup>Lu-DOTA-Daratumumab



1. Minnix M, Adhikarla V, Caserta E, Poku E, Rockne R, Shively J, Pichiorri F. Comparison of CD38 targeted alpha- vs beta-radionuclide therapy of disseminated multiple myeloma in an animal model. 2020



### **CAR T-cell Predator-Prey Mathematical Model**

$$\frac{dV}{dt} = \rho V \left( 1 - \frac{V}{K} \right) - \kappa_1 V C$$

 $\frac{dC}{dt} = \kappa_2 V C - \theta C$ 

| V(t): tumor cells |  |
|-------------------|--|
| C(t): CAR T-cells |  |

| parameter             | description                                                                                | unit                                 |
|-----------------------|--------------------------------------------------------------------------------------------|--------------------------------------|
| ρ                     | cancer cell net growth rate                                                                | day⁻¹                                |
| К                     | carrying capacity                                                                          | cell                                 |
| <i>к</i> <sub>1</sub> | CAR T-cell killing rate                                                                    | day <sup>-1</sup> cell <sup>-1</sup> |
| <i>к</i> <sub>2</sub> | net rate of proliferation and exhaustion of CAR<br>T-cells when stimulated by cancer cells | day <sup>-1</sup> cell <sup>-1</sup> |
| θ                     | CAR T-cell death rate (persistence)                                                        | day⁻¹                                |



 Sahoo P, Yang X, Abler D, Maestrini D, Adhikarla V, Frankhouser D, et al. Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data. J R Soc Interface. 2020;17(20190734).



### **CAR T-cell model potential PK/PD**



 Sahoo P, Yang X, Abler D, Maestrini D, Adhikarla V, Frankhouser D, et al. Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data. J R Soc Interface. 2020;17(20190734).



# **CAR T-cell killing dynamics**



 Sahoo P, Yang X, Abler D, Maestrini D, Adhikarla V, Frankhouser D, et al. Mathematical deconvolution of CAR T-cell proliferation and exhaustion from real-time killing assay data. J R Soc Interface. 2020;17(20190734).

## CAR T-cell + $\alpha$ RIT Combination therapy in MM



### CAR T-cell + $\alpha$ RIT Combination therapy in MM



$$\frac{dV_T}{dt} = \rho V_T - \delta(t - \tau_{Rx})k_{Rx}V_R - \delta(t - \tau_C)\kappa_1 V_T C$$

$$\frac{dV_R}{dt} = \delta(t - \tau_{Rx})(k_{Rx}V_R - k_{cl}V_R) - \delta(t - \tau_C)\kappa_1V_RC$$

$$\frac{dC}{dt} = \kappa_2 (V_T + V_R)C - \theta C$$





## Summary

• Combination therapies and challenges of RIT + CAR T-cell immunotherapy

- Mathematical modeling to address challenges of combo therapy
  - Mathematical models can incorporate:
  - RIT decay, dose, tumor response, toxicity constraints
  - CAR T cell effect, proliferation, exhaustion
  - Provide a framework to optimize: dose, sequence, timing
  - Make predictions and give dynamic quantifications of response



### Thank you





Flavia Pichiorri, John Shively Megan Minnix, Amrita Krishnan Joycelynne Palmer, Vikram Adhikarla Christine Brown, Behnam Badie Russell Rockne, Michael Barish Prativa Sahoo, Xin (Cindy) Yang