Evidence for sequential effects in reading from a million women’s mammograms in the UK

Professor Sian Taylor-Phillips
Professor of Population Health
University of Warwick

David Jenkinson, Matthew Wallis, Aileen Clarke
Contents

1. Vigilance hypothesis
2. The CO-OPS trial
3. CO-OPS Results
4. Longer Batch results
5. Summary of findings and implications for future work
1. Vigilance Hypothesis
2. The CO-OPS Trial

Changing Case Order to Optimise Patterns of Performance in Screening

• Is there a vigilance decrement?
• Does reverse reading help?

s.taylor-phillips@warwick.ac.uk
The CO-OPS Trial

Pragmatic randomised controlled trial of a software intervention to change case order so that any vigilance decrement will occur for the first and second readers when examining different cases.

Intervention ↓↑ or ↑↓

Control ↓↓ or ↑↑

s.taylor-phillips@warwick.ac.uk
<table>
<thead>
<tr>
<th>Reader 1: Forward</th>
<th>Reader 2: Forward</th>
<th>Both readers together</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control arm</td>
<td>Intervention arm</td>
<td></td>
</tr>
<tr>
<td>Vigilan vs Vigilan</td>
<td>Vigilan vs Vigilan</td>
<td>Vigilan vs Vigilan</td>
</tr>
<tr>
<td>A B C D E F Woman</td>
<td>A B C D E F Woman</td>
<td>A B C D E F Woman</td>
</tr>
<tr>
<td>Number of disagreements = Low</td>
<td>Number of disagreements = High</td>
<td></td>
</tr>
<tr>
<td>Recall Rate = Low</td>
<td>Recall Rate = High</td>
<td></td>
</tr>
<tr>
<td>Cancer Detection Rate = Low</td>
<td>Cancer Detection Rate = High</td>
<td></td>
</tr>
</tbody>
</table>
The CO-OPS Trial

Participation:

• 46 English Breast Screening Centres completed the trial
• One year of data collection
The CO-OPS Trial

Primary Analysis

- Multi-level model of the predictors of cancer detection rate

Secondary Analyses

- Multi-level model of the predictors of recall rate and rate of disagreements
- Patterns of performance with time since a break

s.taylor-phillips@warwick.ac.uk
Randomized (n=1,207,633) in 37,724 batches

Intervention Arm
(n=603,528) in 18,797 batches
Received allocated intervention (n=524,971, 87%)
Lost to follow-up 0.07%
Analysed (n=596,642, 98.9%)

Control Arm
(n=604,105) in 18,927 batches
Received allocated intervention (n=560,760, 93%)
Lost to follow-up 0.06%
Analysed (n=597,505, 98.9%)
3. CO-OPS trial results

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer Detection Rate (95%CI)</td>
<td>0.89% (0.86% to 0.91%)</td>
<td>0.88% (0.85% to 0.90%)</td>
</tr>
<tr>
<td>Recall Rate (95%CI)</td>
<td>4.14% (4.09% to 4.19%)</td>
<td>4.17% (4.12% to 4.22%)</td>
</tr>
<tr>
<td>Rate of disagreements (95%CI)</td>
<td>3.43% (3.39% to 3.48%)</td>
<td>3.48% (3.43% to 3.53%)</td>
</tr>
</tbody>
</table>
Patterns of recall: Single reader

- Recall Rate
- Cancer Detection Rate

Position in Batch
Is this pattern real?

- Reading order isn’t random
- One batch = one day on one machine (30-60)
- Order is alphabetised by GP practice
- Women can rearrange appointment time but rare

s.taylor-phillips@warwick.ac.uk
Patterns of recall: Single reader
Why doesn’t it change overall recall rate?

• Film reader variability?
• Arbitration of discordant cases removing excess recalls at beginning?
• Changes to who is recalled but not number recalled?

s.taylor-phillips@warwick.ac.uk
Film Reader Variability

Recall rate by reader (only including those who read >1000)

s.taylor-phillips@warwick.ac.uk
Recall rate combining both readers

Arbitration of discordant cases removing excess recalls at beginning? No
Changes to who is recalled but not number recalled? Maybe

s.taylor-phillips@warwick.ac.uk
Disagreements

Excess of recall at beginning of the batch, in the intervention arm this is spread over different cases
4. Analysis of longer time on task

• What about sessions longer than 60 cases? UK film readers often examine several batches back to back

• Analysed patterns of performance over time for each reader
 – Time stamps for decision on each case
 – Break defined as 10, 20, 60, 180, or 480 minutes without a decision
 – Excluded cases moved from intended order
 – Excluded first case after break

s.taylor-phillips@warwick.ac.uk
Follow-on analysis

- Reader 1 analysed, because reader 2 not blinded
- Multi-level models, levels: woman, reader1, centre
- Adjusted for woman’s age and whether she has previously attended screening
- Linear models with knots at 20 and 40 cases
- Distribution: logistic for recall and cancer detection, gamma for time taken

s.taylor-phillips@warwick.ac.uk
Follow-on analysis

• Outcomes
 – Reader 1 recall yes/no
 – Reader 1 cancer detected yes/no
 • (Reader recalls and cancer detected in follow-up biopsy)
 – Reader 1 time taken to examine the case
 • (Time stamp at end of case minus time stamp at end of previous case)
 – Sensitivity and specificity of reader 1
 • (Reference standard is cancer detected at screening or symptomatically in 3 years following screening)

s.taylor-phillips@warwick.ac.uk
Summary of findings

• There appear to be an excess of recalls at the beginning of a reading session
• The reverse reading intervention doesn’t affect recall rate overall, but does appear to affect who is recalled.
• Reading speed appears to increase and recall rate appears to decrease with time on task
 – Good fit with evidence that batch reading improves specificity.
• Cautious interpretation of post-hoc analyses of large observational dataset
Next Steps in Research

- What do we want to detect in breast cancer screening?
- Characteristics of cancers/pre-cancers detected.
- Maximise morbidity and mortality benefits, and minimise overdiagnosis.
- What are the long term outcomes after previous changes to breast screening?
 - Two readers
 - Reader test threshold (recall rate)
 - Age of eligibility
Further Information

Email: s.taylor-phillips@warwick.ac.uk

Website: https://warwick.ac.uk/fac/sci/med/research/hscience/pet/scree ning/breast/

Twitter: @siantphillips2

This work was funded by an NIHR Career Development Fellowship for Professor Taylor-Phillips. The views expressed are those of the author(s) and not necessarily those of the NHS, NIHR, or Department of Health.