

Possibilities and challenges in data analysis

Adriaan A. Lammertsma

The Spectrum of Medical Imaging

StructureX-ray/CT/MRIPhysiologyUS, SPECT, PET, MRI/SMetabolismPET, MRSDrug distributionPETMolecular pathwaysPETMolecular targetsPET, SPECT

PET: Quantitative Picomolar Sensitivity

Jones, 1996

Positron Emission Tomography

1975

Wait

Routine Clinical Practice

Inject

Increased uptake = increased binding But what about: increased flow, extraction or delivery? Scan

[¹¹C]R116301: NK1 receptor ligand

Û

Overview kinetic analysis

Rationale for Quantification

- Radiology & Nuclear Medicine: 1 image is worth more than 1000 words
- Imaging Science: 1 number is worth more than 1000 images
- Quantification:
 - Essential for correcting for confounding effects
 - Essential for identifying global effects
 - Essential for monitoring progression of disease and for monitoring response to therapy

[¹¹C]Erlotinib

Dilemma:

- 1. Static whole body scan: noninformative
- 2. Dynamic scan: single field of view, but no information on interlesional heterogeneity

The Solution: Total Body PET

Explorer Total Body PET/CT

Maximum intensity projection (MIP) of late 30 min (a) SUV; (b) indirect OSEM Patlak slope *Ki* (3 iterations 20 subsets)

Opportunities of TB PET

- Quantitative (dynamic) scanning of total body rather than semi-quantitative (static) scanning
- Increased sensitivity

Maximizing Sensitivity by Total-Body PET

~40-fold increase for adult total-body imaging

~20-fold increase for pediatric total-body imaging

~4-fold increase for single organ imaging

EXPLORER Claim: Image Longer

- Major increase in dynamic range
 - can image for 5 more half lives

• ¹¹C ≻ 3 hours

• ¹⁸F > 16 hours

• ⁸⁹Zr > 30 days

56 kg female; 6.7 mCi injected activity; 14 min acquisition

Opportunities of TB PET

- Quantitative (dynamic) scanning of total body rather than semi-quantitative (static) scanning
- Increased sensitivity
 - Longer scans possible in case of slow kinetics
 - Possibility for quantitative imaging of monoclonal antibodies (⁸⁹Zr labelling) in non-oncological applications
- Possibility for non-invasive measurement of arterial input function

Image Kinetics

 $K_1 = flow x extraction (mls min⁻¹ ml⁻¹),$

 $k_2 = functional efflux (min⁻¹),$

k3 = combined forward rate constant (K_{ass} x B_{max}) (min⁻¹),

 $k_4 = dissociation constant = k_{off} (min^{-1})$

Regional tissue & arterial blood time-activity curves with high statistical quality

Challenges for TB PET

• Significant increase in number of lines of response

V

Challenges for TB PET

- Significant increase in number of lines of response \rightarrow enormous datasets
- Larger axial field of view
 - More difficult for claustrophobic patients
 - Patient access: more difficult to inject tracer and to withdraw arterial blood

Total-Body Tracer Kinetics

Challenges for TB PET

- Significant increase in number of lines of response \rightarrow enormous datasets
- Larger axial field of view
 - More difficult for claustrophobic patients
 - Patient less accessible, i.e. difficulty to withdraw arterial blood
- Kinetic heterogeneity, i.e. different models required for different organs
- How to obtain image derived *metabolite corrected plasma* input functions?

Potential Solutions

- Kinetic heterogeneity
- ready exis • Automatic segmentation of organs: cluster analysis, artificial intelligence
 - Parametric analysis: data driven methods such as spectral analysis
- Image derived metabolite corrected arterial plasma input function
 - Whole blood curve from dynamic scan: cluster analysis
 - th venous plasma (metabolite) measurements Combine
 - Derive from simultaneous fitting: same input for all voxels

Image Kinetics

 $K_1 = flow x extraction (mls min⁻¹ ml⁻¹),$

 $k_2 = functional efflux (min⁻¹),$

k3 = combined forward rate constant (K_{ass} x B_{max}) (min⁻¹),

 $k_4 = dissociation constant = k_{off} (min^{-1})$

Regional tissue kinetics & arterial blood input functions with high statistical quality

Future: <u>routine</u> dynamic PET scanning as a non-invasive quantitative tool for clinical & research questions