Who's Afraid of Gadolinium? A Review of the Evidence

Jennifer McDonald, Ph.D.

Associate Professor Department of Radiology Mayo Clinic, Rochester MN

Disclosures

Industry or Professional Relations

- GE Healthcare Scientific Advisor & Investigator-Initiated Research Support
- ACR Committee Member Drugs and Contrast Media

Off Label Use

• None

Talk Outline

- 1. GBCA and Gadolinium Retention Background
- 2. Macrocyclic vs. Linear GBCAs
- 3. Are Gadolinium Deposits Toxic?
- 4. Are Gadolinium Deposits Clinically Relevant?
- 5. Why Not Just Use Macrocyclic GBCAs?

GBCA Safety

- Over 450 million GBCA doses
 administered worldwide!
- Adverse effects can be severe, and even life altering/ending.
- We have an obligation to mold our practice patterns to the safety profile of these agents and to take steps to minimize harm to patients.

Gadolinium-Based Contrast Agents (GBCAs) Available as of 2020

T1 Hyperintensity and Gd Retention

Radiology

Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights.

Purpose:

High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadoliniumbased Contrast Material¹

Tomonori Kanda, MD, PhD Kazunari Ishii, MD, PhD Hiroki Kawaguchi, MD Kazuhiro Kitajima, MD, PhD Daisuke Takenaka, MD, PhD

To explore any correlation between the number of previous gadolinium-based contrast material administrations and high signal intensity (SI) in the dentate nucleus and globus pallidus on unenhanced T1weighted magnetic resonance (MR) images.

Materials and Methods: The institutional review board approved this study, waiving the requirement to obtain written informed consent. A group of 381 consecutive patients who had undergone brain MR imaging was identified for

Intracranial Gadolinium Retention PRELIMINARY MR EVIDENCE

Intracranial GBCA Retention **STUDY DESIGN / METHODS**

STUDY INCLUSION/EXCLUSION CRITERIA

1) Underwent 4+ Gd-enhanced or 1+ unenhanced brain MRIs

- 2) Had appropriate pre-contrast T1W sequences
- 3) Underwent autopsy with antemortem consent

Contrast Exposed Group: N = 13 Non-contrast Group: N = 10

eGFR, Alk Phos, AST, Bilirubin

ICP-Mass Spectrometry

Transmission Electron Microscopy

Liaht Microscop

Intracranial Gadolinium Retention CONFIRMATORY ICP-MS EVIDENCE

McDonald et al, Radiology 2015

Intracranial Gadolinium Retention CONFIRMATORY TEM EVIDENCE

Control Patient

Gadolinium Exposed Patient

Gadolinium Exposed Patient

McDonald et al, Radiology 2015

Intracranial Gadolinium Retention HOW WIDESPREAD IS THIS PHENOMENON?

- Gd retention was observed in patients exposed to linear and macrocylic GBCAs.
- Gd appears to be retained in nearly every tissue!

Macrocyclic vs. Linear GBCAs CHEMICAL JUSTIFICATION

Macrocyclic vs. Linear GBCAs

PRECLINICAL MODEL OF GD DEPOSITION

- Gadolinium tissue concentration is not entirely class-dependent
- Gadavist levels are much higher than ProHance, and within 2-4 –fold of linear agents.
- Similar pattern of differentiation is seen in other organs, at higher [Gd].

Macrocyclic vs. Linear GBCAs

ICP-MS RESULTS – BRAIN

Gadolinium Retention EMA AND FDA RECOMMENDATIONS

EMA

FDA

Findings

Standard for drug suspension

Current standing

Request for ongoing research

Involved in ongoing research

Precautionary principle Evidence of harm Linear GBCAs banned* No current ban No Yes

(<)

QUESTION: Is Gadolinium Toxic?

QUESTION: Are Gadolinium Deposits Toxic?

Are Gd Deposits Toxic?

NSF & OTHER MECHANISMS

Are Gd Deposits Toxic?

HISTOLOGY RESULTS

- Multiple studies have found no histologic changes in brain tissues of patients exposed to GBCAs (McDonald et al, 2015, McDonald et al, 2017, Fingerhut et al, 2018).
 Cerebellum
 Liver
 Spleen
- Numerous preclinical studies have also not found histologic changes due to GBCA administration.

McDonald et al, Radiology 2017

- The Single Most Important Question
- Real World Data: Over 450 million doses of IV GBCAs have been administered over the past 30 years (Linear > Macrocyclic) WITHOUT widespread reports of neurotoxicity. However, scientific proof is needed!

How Do We Go About Testing This?

- 1. Preclinical Models
- 2. Retrospective Human Data
- 3. Prospective Human Data

WHAT SYMPTOMS TO EXAMINE?

Dentate Nucleus

Coordination (planning and initiation) of limb movement

<u>Basal Ganglia</u>

- learning and memory
- coordination of movement; filtering out undesired movements; posture and balance
- implicated in anxiety and mood disorders

USING A PRECLINICAL RAT MODEL TO STUDY THE EFFECT OF GD ON LOCOMOTOR, COGNITIVE/MEMORY, MOOD & BALANCE/COORDINATION FUNCTION

	Study Group	S
Group	Agent	Dose (mmol/kg)
1	Saline	-
2	Gadopentetate	2.5
3	Gadodiamide	2.5
4	Gadoversetamide	2.5
5	Gadobenate	2.5
6	Gadoteridol	2.5
7	Gadobutrol	2.5
8	Gadoterate	2.5
9	Gadoxetate	2.5
10	Gadodiamide	0.6
11	Gadoterate	0.6

USING A PRECLINICAL RAT MODEL TO STUDY THE EFFECT OF GD ON LOCOMOTOR, COGNITIVE/MEMORY, MOOD & BALANCE/COORDINATION FUNCTION

 No differences between GBCA-exposed and control rats were observed for any behavioral test.

NEGATIVE FINDINGS

Findings	GBCA	Species	Condition	Reference
No increased risk of Parkinsonism diagnosis	Multiple	Human	No specific	Welk et al. 2016
No change in neurologic test results, no increased risk of developing mild cognitive impairment	Gadodiamide	Human	No specific	McDonald et al. 2016
No signs of cerebellar toxicity	Gadoterate	Human	No specific	Perrotta et al. 2017
No correlation between T1 hyperintensity and worse clinical outcomes	Multiple	Human	MS	Cocozza et al. 2019
No neurological and neurocognitive/psychological abnormalities	Gadodiamide	Human	Crohn's	Mallio et al. 2019
No association with MS severity	Gadodiamide	Human	MS	Zivadinov et al. 2019
No neurological/neuropsychological impairment in the DN and GP	Multiple	Human	GBM	Vymazal et al. 2019

POTENTIALLY POSITIVE FINDINGS

Findings	GBCA	Species	Condition	Reference
Increased T1 signal in dentate nucleus in exposed patients correlated with lower verbal fluency scores	Multiple	Human	MS	Forslin et al. 2017
In utero GBCA exposure was associated with increased risk of various skin conditions, stillbirth, and neonatal death	Multiple	Human	Pregnancy	Ray et al. 2016

GADOLINIUM DEPOSITION DISEASE

Gadolinium in Humans: A Family of Disorders

Richard C. Semelka¹ Miguel Ramalho^{1,2} Mamdoh AlObaidy^{1,3} Joana Ramalho^{1,4} **OBJECTIVE.** The literature informs us that gadolinium can cause health issues. At least four major gadolinium disorders, including the two well-recognized nephrogenic systemic fibrosis and severe acute adverse event, have been identified.

CONCLUSION. We propose naming the histopathologically proven presence of gadolinium in brain tissue "gadolinium storage condition," and we describe a new entity that represents symptomatic deposition of gadolinium in individuals with normal renal function, for which we propose the designation "gadolinium deposition disease."

- Studies encompassing 139 patients.
- Constellation of symptoms, including neuropathic pain, fatigue, joint stiffness, headache, cognition changes.

GADOLINIUM DEPOSITION DISEASE

Gadolinium in Humans: A Family of Disorders

Richard C. Semelka¹ Miguel Ramalho^{1,2} Mamdoh AlObaidy^{1,3} Joana Ramalho^{1,4} **OBJECTIVE.** The literature informs us that gadolinium can cause health issues. At least four major gadolinium disorders, including the two well-recognized nephrogenic systemic fibrosis and severe acute adverse event, have been identified.

CONCLUSION. We propose naming the histopathologically proven presence of gadolinium in brain tissue "gadolinium storage condition," and we describe a new entity that represents symptomatic deposition of gadolinium in individuals with normal renal function, for which we propose the designation "gadolinium deposition disease."

- No control group, no way to confirm causality.
- No correlation between reported symptoms and Gd levels.
- Lots of missing data.

GADOLINIUM DEPOSITION DISEASE

Gadolinium in Humans: A Family of Disorders

Richard C. Semelka¹ Miguel Ramalho^{1,2} Mamdoh AlObaidy^{1,3} Joana Ramalho^{1,4} **OBJECTIVE.** The literature informs us that gadolinium can cause health issues. At least four major gadolinium disorders, including the two well-recognized nephrogenic systemic fibrosis and severe acute adverse event, have been identified.

CONCLUSION. We propose naming the histopathologically proven presence of gadolinium in brain tissue "gadolinium storage condition," and we describe a new entity that represents symptomatic deposition of gadolinium in individuals with normal renal function, for which we propose the designation "gadolinium deposition disease."

THE FDA DOES NOT FIND SUFFICIENT CAUSAL EVIDENCE FOR GDD

GD RETENTION LAWSUITS

SIDE EFFECTS FOLLOWING MRI OR MRA WITH CONTRAST?

Gadolinium Deposition Disease Lawsuits

Clean Sweep of Plaintiffs' Causation Experts in Gadolinium Litigation

By Michelle Yeary on August 13, 2019

POSTED IN EXPERTS

NEWS | CONTRAST MEDIA | JANUARY 17, 2020

Voluntary Dismissal of Chuck Norris Gadolinium Case Involving Bracco

The lawsuit alleging injury from the company's MR contrast agent has been closed

Should we change clinical practice?

- GBCAs provide crucial, life-saving medical information.
- Weight the clinical benefit GBCAs may provide against the unknown risks of Gd retention.
- Consider multiple factors when choosing a GBCA: diagnostic efficacy, relaxivity, rate of adverse reactions, and amount of Gd deposited.

- No direct evidence yet that Gd retention causes harm in patients.
- However, higher amounts of Gd are retained following linear vs. macrocylic GBCAs.
- Gd has documented toxicity.
- Why not just switch to macrocylics to be safe?

OTHER GBCA SAFETY CONSIDERATIONS

ിറ
Õ
· Ħ
0
g
\sim

Ashkan Heshmatzadeh Behzadi, MD
Yize Zhao, PhD
Zerwa Farooq, MD
Martin R. Prince, MD, PhD

Immediate Allergic Reactions to Gadolinium-based Contrast Agents: A Systematic Review and Meta-Analysis¹

> To perform a systematic review and meta-analysis to determine if there are differences in rates of immediate allergic events between classes of gadolinium-based contrast agents (GBCAs).

Figure 2: Graph shows rates of immediate mild, moderate, and severe allergic-like reactions to GBCA combining data from all nine articles. Horizontal lines indicate 95% Cls.

• Meta-analysis of 716,978 GBCA administrations.

Purpose:

GBCA with highest Gd retention had lowest rate of acute reactions.

OTHER GBCA SAFETY CONSIDERATIONS

GBCA Used	Total Injections	Mild	Moderate	Severe	Total
All reactions					
Gadodiamide	140645	196 (14)	70 (5)	0	266 (19)
Gadobutrol	94109	245 (26)	92 (10)	3 (0)	340 (36)
Gadobenate dimeglumine	39138	141 (36)	56 (14)	3 (1)	200 (51)
Gadoterate meglumine	8053	9 (11)	1 (1)	0	10 (12)
Allergic-like reaction					
Gadodiamide	140645	76 (5)	46 (3)	0	122 (9)
Gadobutrol	94109	107 (11)	75 (8)	3 (0)	185 (20)
Gadobenate dimeglumine	39138	77 (20)	51 (13)	3 (1)	131 (33)
Gadoterate meglumine	8053	4 (5)	0	0	4 (5)
Physiologic reaction					
Gadodiamide	140645	120 (9)	24 (2)	0	144 (10)
Gadobutrol	94109	138 (15)	17 (2)	0	155 (16)
Gadobenate dimeglumine	39138	64 (16)	5 (1)	0	69 (18)
Gadoterate meglumine	8053	5 (6)	1 (1)	0	6 (7)

- Mayo Clinic data shows a similar pattern of acute reaction rates.
- Are we replacing an unknown risk with a known one?

Gadolinium Retention

- 1. All GBCAs cause Gd deposition in the brain and other organs.
 - Macrocyclic agents deposit less.
 - Deposition is not entirely class dependent.
- 2. There is no strong evidence of neurotoxicity or clinical effects associated with Gd retention.

3. A risk-benefit assessment should be performed when deciding to use GBCAs and choosing a particular GBCA.

Project Collaborators MULTI-DISCIPLINARY TEAM

Radiology

Kent Thielen MD

Eric Williamson MD Cliff Jack MD

Neurology

Larry Eckel MD

Dave Kallmes MD Jennifer McDonald PhD Bob McDonald MD, PhD

Applied Neuroradiology Laboratory

J. Ayers-Ringler PhD

Mark Jentoft MD

Laboratory Medicine & Pathology

Daving Dai MD PhD

Ram Kadirvel PhD

Avinash Nehra MD Susie Han

Gabe Tudor

Biochemistry

Jeff Salisbury PhD

Sean Pittock MBBCh Eoin Flanagan MBBCh

Ron Petersen MD PhD

Mayo Clinic Rodent Behavior Core

J. Ayers-Ringler PhD

Statistics

Rickey Carter PhD

Trace Christenson

Dave Murray MD, PhD

Paul Jannetto PhD

Thank you mcdonald.jennifer@mayo.edu

