Achievements, Challenges, and Present Status of QIBA's Ultrasound Shear Wave Speed Biomarker Committee

> Timothy J Hall, PhD Professor and Interim-Chair, Department of Medical Physics Vice-Chair, RSNA-QIBA

Overview

- Who/What is the Quantitative Imaging Biomarker Alliance (QIBA)?
- Why shear wave speed estimation?
- What is the goal of QIBA in this effort?
 - What is the role of physicists in this effort?
- What has been done to date?
 - What were the findings?
 - What are the implications?

Quantitative Imaging Biomarkers Alliance

- QIBA was initiated in 2007
- RSNA Perspective: One approach to reducing variability in medical imaging is to extract objective, quantitative results from imaging studies.
- **QIBA** Mission
 - Improve the value and practicality of *quantitative imaging biomarkers* by reducing variability across devices, sites, patients, and time.
 - "Industrialize imaging biomarkers"

Current Status of QIBA

- Over 1,100 individuals have joined the QIBA effort
 - Representation by all major stakeholders in medical imaging
 - Over 300 individuals from at least 166 imaging device companies
 - 22 from the FDA
 - 41 from USA government (excluding FDA; 63 government agencies)
 - 33 professional societies are represented
 - Representatives from major Pharma companies
 - Representatives from contract research organizations (clinical trialist)
 - Many physicists/engineers (>400 academics), physicians (>300 radiologists), statisticians...
- Vast majority of stakeholder efforts are voluntary

QIBA Involvement Across Modalities

Quantitative Imaging Biomarkers

Biomarkers are characteristics that are objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.¹

Quantitative imaging biomarkers (QIBs) are objective characteristics derived from *in vivo* images *measured on interval or ratio scales* as indicators of normal biological processes, pathogenic processes, or a response to a therapeutic intervention.²

¹NIH Biomarkers Definitions Working Group, Clin Pharmacol Therap 69(3):89-95, 2001 ²Kessler et al., Stat Methods Med Res, epub Jun 2014 (www.rsna.org/qiba)

Imaging as an Assay

• Assays are defined by their:

• Clinical performance

Clinical validation

• Clinical utility

QIB Challenges

Diagnostic Imaging Equipment ≠ Measurement Device

- Measurement Device:
 - Specific measurand(s) with known bias and variance (confidence intervals)
 - Specific requirements for reproducible quantitative results
 - Example: thermometer many kinds for different applications
- Diagnostic Imaging Equipment:
 - Historically: best image quality in shortest time (qualitative)
 - No specific requirements for reproducible *quantitative* results (with few exceptions)

Goal of QIBA

In a word: *Reproducibility*

- Estimate and increase the reproducibility of Quantitative Imaging Biomarkers (QIBs) across imaging centers, imaging equipment, participants, and time
- Convert "imaging systems" into "measurement systems" and maximize their performance

Objectively Assessing Tissue 'Softness'

Elasticity imaging techniques in wide-spread use in radiology and hepatology (liver fibrosis)¹

Shear wave elasticity imaging

- Push tissue remotely with long duration (100µs) ultrasound pulse
 - Typical ultrasound pulse is sub-microsecond
 - Force from a long pulse excites a shear wave
- Track tissue displacement (wave motion) perpendicular to push
 - Shear waves travel ~1-10m/s
 - Acoustic waves travel ~1540m/s
- Shear wave speed related to shear modulus

•
$$c_s^2 = \mu / \rho$$
 (SWS)² = modulus / density

¹ Ferraioli G, et al.. UMB 2015 May 1;41(5):1161-79.

Dan Russell http://www.acs.psu.edu/drussell/demos.html

Simulated Shear Wave in Homogeneous Medium

Palmeri et al "A finite element method model of soft tissue response to impulsive acoustic radiation force", *IEEE UFFC*, 52(10): 1699-1712, 2005.

Shear Modulus vs. Fibrosis Stage

Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness il Journal of Hepatology 2011 vol. 551666-672 with nonalcoholic fatty liver disease

Mark L. Palmeri^{1,*}, Michael H. Wang¹, Ned C. Rouze¹, Manal F. Abdelmalek², Cynthia D. Guy³, Barry Moser⁴, Anna Mae Diehl², Kathryn R. Nightingale¹

¹Department of Biomedical Engineering, Dake University, Durham, NC, USA: ²Division of Castroenterology and Hepatology, Duke University Medical Center, Durham, NC, USA; ³Department of Pathology, Duke University Medical Center, Durham, NC, USA; ⁴Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA SWS Threshold 4.24 kPa Fo-2:F3-4 90% sensitivity 90% specificity 0.90 AUC

This threshold is system dependent

Goal of QIBA

In a word: *Reproducibility*

- Estimate and increase the reproducibility of Quantitative Imaging Biomarkers (QIBs) across imaging centers, <u>imaging equipment</u>, participants, and time
- Convert "imaging systems" into "measurement systems" and maximize their performance

What is the Role of a Physicist?

- Think of this as a metrology problem
 - What is the fundamental *thing* we're trying to measure?
 - What are the components of variance in the estimate?
 - How do we minimize estimate bias?
- Fundamentally, we're studying wave mechanics
- How do we model the phenomenon?
 - Does the model fit the data?
 - Can we use it to interpret results?
 - Can we estimate the real (elastic; storage modulus) and imaginary (viscous; loss modulus) components of the complex shear modulus?

Motion Tracking for SWS Estimation

Should we track particle displacement or particle velocity?

Does (should) it matter?

Dan Russell http://www.acs.psu.edu/drussell/demos.html

QIBA SWS Studies

- Uniform shear wave elastography phantoms provided by CIRS
 - Two stiffness nearly lossless ('elastic') phantoms¹
 - Three stiffness viscoelastic (lossy)²
- 12 sites around the world involved in data acquisition
 - Multiple commercial systems at some sites
- Commercial ultrasound systems from
 - Canon (Aplio 500)
 - Echosens (Fibroscan)
 - GE Logiq E9
 - Hitachi (HiVision Ascendus)
 - Philips (Epiq 5)
 - Samsung (RS8o)
 - Siemens (ACUSON S2000)
 - Supersonic Imagine (Aixplorer)
 - Plus several experimental systems in academic labs + MRE (shear modulus inversion) ^{3, 4}

¹Hall TJ, et al. IEEE International Ultrasonics Symposium (IUS) 2013 Jul 21 (pp. 397-400). ²Palmeri M, et a. IEEE International Ultrasonics Symposium (IUS) 2015 Oct 21 (pp. 1-4). ³Muthupillai R, et al. Science. 1995 Sep 29;269(5232):1854-7. ⁴Sarvazyan A, et al. Current Medical Imaging. 2011 Nov 1;7(4):255-82.

Wave Speed Estimation

(Nearly) Lossless Material

Little difference in SWS with Displacement-based v Velocity-based SWS Estimates

Phase Speed Nearly Independent of Frequency

Elastic (Lossless) Phantom Results

Grouped by Site

Grouped by System

Note the depth-dependent estimates for some systems

~5% range in median SWS among systems

Hall TJ, et al. IEEE International Ultrasonics Symposium (IUS) 2013 Jul 21 (pp. 397-400).

Wave Speed Estimation

Lossy (Viscoelastic) Material

Large difference in SWS with Displacement-based v Velocity-based SWS Estimates

Phase Speed is Frequency-Dependent

Nightingale KR, et al. IEEE UFFC 2015 Jan 12;62(1):165-75. Palmeri M. et al. UMB 2019 Jan 1;45:S24.

Visco-Elastic Phantom Results

Softer Phantom

Stiffer Phantom

~15% range in median SWS among systems

Palmeri M, et a. IEEE International Ultrasonics Symposium (IUS) 2015 Oct 21 (pp. 1-4).

MRE vs US SWS

Violin plot combining all ultrasound SWS data for each phantom

MRE typically performed at 60 -- 80 Hz in human liver MRE and Ultrasound agree when MRE is performed at ~140 Hz

Phantom SWS Estimates v Human Liver

Viscoelastic phantoms are a reasonable representation for in vivo human liver

Next Steps for Manufacturers

One manufacturer has modified their SWS estimation algorithms to provide equivalent SWS estimates with all their transducers

SWS estimates are depth-independent

Summary

- The Quantitative Imaging Biomarker Alliance (QIBA) is an international organization involving all stakeholders in medical imaging
- Shear wave speed (SWS) estimated with commercial ultrasound systems is an alternative to serial biopsy for assessing liver fibrosis
- QIBA efforts are intended to increase the reproducibility of SWS estimates across imaging centers, imaging equipment, participants, and time
- The physicists' role in this is to approach the problem like any other metrology problem
- We have demonstrated that the perceived clinical variability in SWS estimates is likely not due to the imaging systems (technical performance)
 - SWS estimates in 'elastic' materials within about 5% among commercial systems
 - SWS estimates in viscoelastic materials within about 15% among commercial systems
 - We can do better than that!

Acknowledgments

- RSNA and RSNA QIBA Staff
- RSNA QIBA Process Committee & Metrology Working Group
- Ted Lynch (CIRS) Shear wave imaging phantoms
- QIBA SWS Biomarker Committee & Task Force Co-Chairs & Members
- NIBIB Contracts HHSN268201000050C, HHSN268201300071C, HHSN268201500021C

www.rsna.org/qiba

qibawiki.rsna.org

