

AIUM/QIBA	Jolume Flow Biomarker Subcommittee	
Member	Institution	
Oliver Kripfgans, PhD, Co-chair	University of Michigan	
J Brian Fowlkes, PhD, Co-chair	University of Michigan	
James Jago, PhD, Co-chair	Philips Healthcare	
Kazuya Akaki	Toshiba	
Ajaj Anand	Carestream	
Cristel X. Baiu	Cristel X. Baiu	
Matt Bruce, PhD	University of Washington	
Paul Carson, PhD	University of Michigan	
Shigao Chen, PhD	Shigao Chen, PhD	
Yi Hong Chou, MD	Taipei Veterans General	
Hyo-Min Cho, PhD	Korea Research Institute of Standards and Science	
David Dubberstein, PhD	GE Healthcare	
Todd Erpelding, PhD	Toshiba	
Jing Gao, MD,	Weill Cornell Medical College	
Timothy Hall, PhD	Wisconsin Institutes for Medical Research	
Mauro Hanaoka, MD	University of São Paulo	
Mark Holland	Indiana University	
Ron Leichner, PhD,	Philips Healthcare	E D))
Adrian Lim	Imperial College London	
Mark E. Lockhart, MD, MPH,	Univ. of Alabama at Birmingham	_` <u>´</u>
Ted Lynch, PhD	CIRS, Inc.	
Ravi Managuli, PhD	Hitachi Aloka Medical America, Inc	
Andy Milkowski	Siemens	UNIVERSITY OF
Shigeto Ono	CIRS, Inc	MICHIGAN

Partie	cipati	ing C	omp	anies	i (Alp	habe	tical)
Aloka Medical America	CI	RS	Gam Si Nuc	mex - un clear	G Healt	iE hcare	Hitachi
Pfize	r Inc.	Phi Healt	ilips hcare	Sien Healt	nens hcare	Car Mec Syst	non lical ems
7							

Flow Indices and Metrics

$$f_D = 2f \cos\theta v_o/c$$

- Variety of flow indices used for assessing flow. - Less operator dependence than absolute flow measures
- S/D ratio = (systolic / diastolic ratio)
- Resistance index (RI) = [(systolic velocity diastolic velocity) / systolic velocity]
- Pulsatility index (PI) = [(systolic velocity diastolic velocity) / mean velocity]

Volume Flow (Q) vs. Flow Velocity (V)
$(A) \xrightarrow{\vee} Q = \oint \vec{v} \cdot d\vec{A}$
$(A) \xrightarrow{V} \\ (A) \xrightarrow{V} $
Same flow velocity but VERY DIFFERENT VOLUME FLOW!!!!!

Clinical Umbilical Flow Study

- 35 patients each with a singleton pregnancy

 Recruited from a population at an increased risk of
 preeclampsia.
- Classified into 3 groups:
 - -21 at-risk patients
 - -5 with preeclampsia (29.7-34.3 weeks GA)
 - -9 with normal pregnancies (25.9-34.7 weeks GA)

Pinter SZ, et al , J Ultrasound Med, 2017.

25

27

- Images acquired on a LOGIQ E9 with a 2.0–8.0-MHz bandwidth array transducer (RAB6-D)
- Three different free loop positions along the length of the cord.
- Intra-subject and intra-measurement relative standard error (RSE) were 12.1 ± 5.9 and 5.6 ± 1.9 % (mean ± SD), respectively.

Pinter SZ, et al , J Ultrasound Med, 2017.

26

Ultrasound Systems in this Study*

- Canon (formerly Toshiba) Aplio 500 with a mechanically swept 9CV2 probe
- GE Logiq LE9 with a mechanically swept RSP6-16
 probe
- Philips Epiq 7 with an X6-1 2Dmatrix array

* Other participating companies have systems in development. Kripfgans et al. Radiology, Accepted

	otal of 738 datasets o	consisting of 18,450 image volu	imes.	
Dataset size		No. volumes scanned		
No. systems 3		No. systems	3	
No. sites	3	No. sites	3	
No. flow modes	2	No. volumes (per flow mode)	20 (constant) 30 (pulsatile)	
No. parameter steps (per test)	12 (flow) 11 (depth) 12 (gain) 6 (stenosis)	No. parameter steps (per test)	12 (flow) 11 (depth) 12 (gain) 6 (stenosis)	
Total no. datasets	738	Total no. volumes	18,450	

32

33

31

Summary of Phantom Results

- Volume flow estimated by 3D color flow ultrasound was
 Accurate (11.5% mean bias)
 Reproducible (10.4% mean within-subject CV)
- There were differences among systems that are still being examined. There are changes being made to systems expecting to improve performance.
- Phantom accuracy?
 Data collected over several months (03/2017 to 03/2019).
- Plantom was not recalibrated during this period. Two phantoms were circulated. Flow meter accuracy 0.5% of reading (+/- 0.25% based on measure with a blood mimicking fluid (matched viscosity) and 2000 mL flask)

37

38

39

Clinical Objective – Umbilical Flow

())

Potential Associated Claims

- Claim 1: (cross-sectional) For a measured volume blood flow of X mL/min, a 95% confidence interval for the true flow is X mL/min \pm 15%.
- Claim 2 : (technical performance claim) The volume flow measurement has a within-subject coefficient of variation (wCV) < 20%.

44

