

Achievements, challenges, and present status of QIBA's Contrast-Enhanced Ultrasound committee

Mike Averkiou, PhD University of Washington, Bioengineering Seattle, WA

AAPM/COMP Meeting July 14, 2020

What are ultrasound contrast agents? SonoVue, Bracco

- encapsulated microbubbles
- diameter 1-10 μm
- surfactant or polymeric shell
- PFC gas
- resonant scatterers
- delivered intravenously
- true "blood pool" agent
- diffuse in blood stream
- filtered by liver

Approved ultrasound contrast agents around the world

	Agent/ Manufacturer	Approved indications	Countries	
	SonoVue/Lumason/ Bracco	LVO – Cardiology Macro and micro vascular imaging – Radiol.	EU, ASIA, USA! EU, ASIA, USA!	
	Optison/ GE Healthcare	LVO – Cardiology	USA, EU, ASIA	
	Definitiy/ Lantheus Medical Imaging	LVO – Cardiology Liver, kidney – Radiol.	USA, EU, ASIA A few countries, not EU or USA	
	Sonazoid/ Daiichi Pharma Co.	Liver, Breast – Radiol.	Japan	

Cancer therapy monitoring and evaluation

- Current tumor therapy evaluation relies on RECIST criteria (strictly tumor size)
- New anti-vascular therapies are mainly cytostatic and thus current therapy evaluation criteria are inadequate
 - Tumors responding to therapy may not shrink at first
 - Tumors shrinking in size may not be responding
- CT and MRI may be used for therapy assessment but certain disadvantages exist: ionizing radiation, cost, availability, clinical validation
- CEUS offers an attractive alternative method for tumor response evaluation
 - Blood pool contrast agent (macro- and micro-circulation, perfusion)
 - Harmless, easily available, bedside, quantifiable

Limitations with RECIST* criteria

*Response Evaluation Criteria In Solid Tumors

Pre Avastin (antiangiogenic drug)

Post Avastin- 3 months

Apparent lesion growth despite other information suggestion tumor response

*Adapted from JAMA (Vauthey, Chun et al. 2009)

W

Why we need CEUS quantification

Colorectal metastasis before any chemotherapy U2652869 FPIO 7G Abd Gen MI 0.06 L MI 0.75 F C5-1 12Hz Peterk poof rabatiletxeeliningenhagele applease C 4:27 Tissue 68% C 55 Gen MI0.05 Contrast 51% C 55 Gen MI0.06 INJ 2

<u>Quantification objective</u>: Extract important physiologic information from the time evolution of the tumor image intensity during the bolus transit (wash-in/washout)

*Outlined lesion is colorectal metastasis in the liver

W

Why we need CEUS quantification

<u>Quantification objective</u>: Extract important physiologic information from the time evolution of the tumor image intensity during the bolus transit (wash-in/washout)

Description of CEUS quantification technique

- Administer microbubble contrast agent
- Collect a 60 sec video
- Draw ROI on tumor and normal liver and form time-intensity curve
- Curve fit data to perfusion model
- Extract important flow parameters

Dietrich CF, Averkiou MA, et al., Ultraschall Med., 33(4), 2012

QIBA: Quantitative Imaging Biomarker Alliance (RSNA)

- QIBA Mission: Improve the value and practicality of quantitative imaging biomarkers by reducing variability across devices, sites, patients, and time
- QIBA Profiles standardize methods to create biomarkers that meet a claimed performance (<u>accurate</u> and <u>reproducible</u>)
- QIBA advances quantitative imaging in clinical trials and clinical practice
- QIBA engages researchers, healthcare professionals and industry

QIBA CEUS (since 2015)

- <u>Objective</u>: Standardize vascularity and perfusion-related quantification with CEUS for clinical use and to create an accurate and reproducible imaging biomarker
- CEUS biomarker committee consists of 50+ experts in the field (clinicians, academics, engineers, basic scientists)
- Task forces: Literature review, clinical focus, imaging systems requirements, quantification analysis software, basic science
- Completed phantom variability study
- <u>https://qibawiki.rsna.org/index.php/Ultrasound_CEUS_BC</u>

How do we analyze and measure a perfusion-related parameter from a CEUS loop with <u>different scanners</u>, <u>different analysis software</u>, at <u>different</u> <u>hospitals</u>, and <u>get the same answer</u> and be able to compare our results?

QIBA CEUS: Decisions so far

- Bolus kinetics (wash in--wash out). Infusion with destruction replenishment may be considered at a later stage.
- Clinical application: liver lesions. Other applications to follow, e.g., IBD, kidney, prostate, etc.
- Start with phantom study first before moving to clinical study
- Must use linear or linearized data
- Curve fit lognormal distribution model (or LDRW*). Do not consider recirculation.
- Extract the following parameters: RT, MTT, AUC, PI

QIBA-CEUS manuscript in press:

Evaluation of the Reproducibility of Bolus Transit Quantification With Contrast-Enhanced Ultrasound Across Multiple Scanners and Analysis Software Packages—A QIBA Study

Michalakis A. Averkiou, PhD,* Eric K. Juang, MSc,* Madison K. Gallagher, BS,* Maria Alejandra Cuevas, BS,* Stephanie R. Wilson, MD,† Richard Barr, MD,‡ and Paul L. Carson, PhD§

Investigative Radiology • Volume 55, Number 10, October 2020

Methods—the QIBA CEUS phantom

- Sonovue/Lumason: 0.2 ml in 19.8 ml saline, inject 2 ml of diluted solution into flow phantom (effort to mimic clinical dose and to be in middle of intensity-concentration linearity range)
- Collect 5 TICs per scanner on a single day (4 scanners used)
- Repeat above procedure on 3 different days (total of N=15 per scanner)
- Keep system parameters constant between trials. Image tube in same orientation and depth every time

Methods—extract TICs from video

Collect 2 minutes image loops of bolus transit

Form time-intensity (TIC) curves from linearized data

Methods-scanner/software combinations

Imaging settings for all the scanners

	Philips iU22	Philips EPIQ	GE LOGIQ E9	Siemens Acuson Sequoia
Mechanical index	0.04	0.05	0.06	0.08
Gain	71%	51%	14	"Low"
Image depth, cm	14	16	15	16
Focal depth, cm	10.5	12.5	12	12
Dynamic range, dB	50	62	96 (max)	70 (max)
Persistence	Off	Off	Frame avg: 0	1 (lowest)
Frame rate, Hz	9	12	9	8
Imaging mode	CPen	Gen	Res	Not available

4 www.investigativeradiology.com

© 2020 Wolters Kluwer Health, Inc. All rights reserved.

Results (sample TIC's)

- Substantially similar curves are produced from all scanners
- Arbitrary amplitude calibration among vendors produces different intensity values—current challenge
- Lognormal distribution produces curves well fitted to the data
- We use fitted curves to extract the important perfusion-related parameters

Results (variability single system)

Use a single scanner and different analysis software to extract parameters

- Low variability for time parameters (RT and MTT)
- Amplitude parameters are more variable (higher COV)
- We cannot compare amplitude parameters across different analysis software

Scanner: Philips EPIQ

Results (variability across systems)

Use a multiple scanners and a single analysis software to extract parameters

- We can only compare time parameters when using multiple scanners
- Low variability for time parameters (RT and MTT)

Analysis s/w and curve fitting: VueBox

Results (overall summary)

RT and MTT: 10-20% variability PI and AUC: 50% variability

Conclusion (QIBA CEUS phantom study)

- An imaging and quantification protocol was established for the accurate measurement of bolus transit parameters
- We have identified RT, MTT, PI, and AUC as the primary bolus transit parameters and the lognormal distribution as the standard model for fitting the TIC
- From repeated trials and while using a single scanner and analysis software, the variability (COV) for RT was less than 8%, for MTT less than 12%, for PI less than 49%, and for AUC less than 50%
- The variability of the time parameters (RT and MTT) slightly increases when comparing values calculated from 4 different scanners and 3 analysis software
- At the present time, it is not possible to compare amplitude values from different scanners and analysis software packages because of the arbitrary linearization algorithm used among vendors

Acknowledgements: RSNA/QIBA, all QIBA CEUS committee members, Bracco, GE, Philips, Siemens, Canon

