Novel Ultrasound Biomarkers: Acoustic Backscatter Coefficient and Related Features

> Jonathan Mamou jmamou@riversideresearch.org

F. L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, NY, USA

Outline

- 1. Quantitative ultrasound (QUS) background
- 2. Backscatter coefficient (BSC) theory
- 3. Experimental BSC measurements
- 4. BSC measurement limitations
- 5. Recent successful BSC/QUS studies
- 6. Perspectives and conclusions

Thanks and acknowledgments - First

- Some slides are adapted from a short course previously offered at the IEEE Ultrasonic Symposium in 2011
- Special thanks to Michael L. Oelze, Timothy J Hall, Helen Feltovich, Aiguo Han, William D. O'Brien Jr, James Zagzebski, and Timothy Bigelow.

Quantitative Ultrasound (QUS) Background

QUS refers to any quantitative measure (i.e., biomarker) obtained using ultrasound data which is

- User independent
- System independent
- Repeatable

-> Measures true tissue/organ property

500-MHz acoustic microscopy in pig eye

Young's modulus in liver

In this presentation, we will focus on QUS methods based on the acoustic backscatter coefficient (BSC)

BSC Theory

BSC definition: $\sigma_d = \frac{r^2 I_{sc}}{VI_{sc}}$

In an inhomogeneous medium:

$$\sigma_{d} = \frac{k^{4} \left\langle \gamma^{2} \right\rangle}{16\pi^{2} V} \int_{V} b_{\gamma} \left(\overrightarrow{\Delta r} \right) e^{-j\vec{K}\cdot\vec{\Delta r}} d\vec{\Delta r}$$

BSC is proportional to the spatial Fourier transform of the autocorrelation $b_{\gamma}(\overline{\Delta r})$ of the tissue in terms $\gamma \approx 2\Delta z/z_0$

BSC depends on tissue microsctructure (spatial distribution, size, shape, and acoustic properties of scatterrers).

BSC is a frequency dependent function and has units of 1/m/str.

r.Distance from the sourceV:Scattering volume, I_{sc} and I_{inc} :Scattered and incident acoustic intensity, respectfullyz and z_0 :Acoustic impedance and average acoustic impedanceK:Wavenumber

BSC Theory

BSC definition:

Use BSC to infer quantitative information about tissue:

- BSC quantifies tissue microstructural organization (i.e., < wavelength)
- BSC provides new contrast mechanisms
- Model-based or model-free methods
- Raw BSC values or fit parameters are used to monitor disease progression, diagnose, characterize tissue, assess new treatment options, etc.

Experimental BSC Measurements

- Pulsed ultrasound beam is emitted
- Scattering occurs in the tissue

All four media would have a very different BSC

Experimental BSC Measurements

- Pulse ultrasound beam is emitted
- Scattering occurs in the tissue
- Backscattered radio-frequency (RF) echo signals are recorded

- Adjacent RF lines are gated and average power spectrum is computed
- BSC is computed using calibration methods

BSC Calibration Methods:

Two methods exist to remove system and user dependence:

Planar Reflector Technique

- Planar surface of known reflectivity
- Use same settings used for sample
- Works for weakly focused single-element sources, not good for arrays are highly focused sources

Reference Phantom Technique

- Well-characterized reference phantom (i.e., known attenuation and theoretical BSC)
- Use same settings used for sample
- Can be used with all transducer types and arrays

Experimental vs. Theoretical BSC

Comparison with Faran's theory for backscatter from glass spheres (Hall et al., UMB, 1996)

BSC Measurements Limitations

- Attenuation compensation
- Calibration needed
- Reference phantom specific: speed of sound differences
- Reference phantom specific: increased variance
- Spatial resolution
- Non-linear propagation
- Multiple scattering and Born approximation
- Requires RF data

<u>Generally speaking:</u> BSC as a biomarker is not clinically available today, but a mature research field with numerous success stories exist!

BSC Measurements Limitations

properties of the beads

Symbols: Experimental BSC from 8 laboratories (blinded to the true properties)

Interlaboratory Comparison of Ultrasonic Backscatter Coefficient Measurements From 2 to 9 MHz (Wear et. Al., JUM 24: 1235-1250, 2005)

Successful and recent BSC/QUS Studies

Foundation studies:

- New theoretical and experimental developments
- Phantom studies

Oncology: Prostate, lymph node, breast, thyroid, etc. Premature birth: Cervix Osteoarthritis: Cartilage Blood: Blood aggregation Ophthalmology: tumors, Myopia Liver: Fatty liver disease Thermal therapy monitoring

And many more!

Ex vivo BSC-based image in a human lymph node

BSC-based cancer imaging

H&E Histology

26-MHz BSC-based image of human cancerous lymph node

Green -> BSC-based cancer probability < 50% Red -> BSC-based cancer probability > 50%

Saegusa-Beecroft et al., Journal of Surgical Research, 2015

In-vivo BSC Classification of human thyroid nodules

Microcalcification

Doppler Imaging

225 ultrasound nodules from 167 patients

Linear combination of QUS AUC: 0.857 ± 0.033

Illustrative BSC-based image in ex vivo human cervix

Second harmonic generation optical microscopy

Strong Isolated Scattering Sources **Periodically-Spaced Scattering Sources** 3 0 3 0 Depth (mm) 05 05 2.25 2.25 10 1.5 1.5 0.75 0.75 20 0 10 40 50 0 20 30 10 30 50 20 40 0 Lateral (mm) Lateral (mm)

BSC to understand changes in normal cervix during pregnancy towards predicting preterm birth risk

- Reusch LM, et al. "Nonlinear Optical Microscopy and Ultrasound Imaging of Human Cervical Structure," J Biomed Optics, 2013.
- Rosado-Mendez IM, et al. "Analysis of coherent and diffuse scattering using a reference phantom," IEEE TUFFC, 2016.
- Guerrero QW, et al., "Quantitative Ultrasound Biomarkers Based on Backscattered Acoustic Power: Potential for Quantifying Remodeling of the Human Cervix during Pregnancy," UMB, 2018.

Liver Fat Quantification

In-vivo human study of 102 participants with known/suspected Nonalcoholic fatty liver disease (NAFLD)

Liver B-mode with a Field of Interest from a 68-year-old man with NAFLD (MRI-PDFF = 25.3%).

Multi-parametric QUS-predicted fat fraction (cross-validated) versus MRI-PDFF scatterplot

UNIVERSITY OF ILLINOIS AT URBANA-CHAM

Han A et al. Published Online: February 4, 2020 https://doi.org/10.1148/radiol.2020191152 Radiology

0

Conclusions

- BSC is a true quantitative "tissue-describing" quantity
- Requires careful methods for experimental computation
- Requires calibration data
- Very sensitive to tissue microstructure and organization

Great potential as a biomarker for a wide range of diseases!

Thank you for your attention!