Session: ADCL Calibrations – More than Just a Number

Wesley Culberson, PhD, DABR, FAAPM
Associate Professor, Department of Medical Physics, University of Wisconsin – Madison
Director, University of Wisconsin Accredited Dosimetry Calibration Laboratory

July 14, 2020
What is an ADCL?

- Accredited Dosimetry Calibration Laboratory (the SSDL equivalent in North America but different…)
- Accredited by the AAPM
- Provides calibrations to users for instruments and radioactive sources for dosimetry in radiotherapy and diagnostic imaging
- Currently three ADCLs:
 - University of Wisconsin (Madison)
 - K&S Associates (Nashville)
 - MD Anderson Cancer Center (Houston)
SSDLs vs ADCLs

• ADCLs
 – Provide everything that an SSDL would provide, PLUS
 • Independent of instrument manufacturers
 • Provide technical support to AAPM members
 • Proficiency Tests

• The result: ADCLs provide unbiased and knowledgeable resources for instrument purchases and guidance
AAPM CLA

• Main forum for discussion of issues relating to calibration of ion chambers and brachytherapy sources
• An assembly of metrology experts

Side note: Possible restructuring in the AAPM may involve the transition to a “Metrology” subcommittee.
What does the CLA do?

- Develops criteria
- Recommends (to AAPM BOD) accreditation for ADCL laboratories
- Carries out assessment visits
- Monitors performance
- Makes recommendations
- Highly technical in nature
What the CLA doesn’t do?

• Does not set prices
• Does not recommend any one ADCL over another
• Does not distinguish between commercial and academic organizations
• Does not try to “spread the business around”
What the ADCLs will not do?

- Does not calibrate solid state radiation detectors
 - Solid state diagnostic instruments
 - Diodes for radiation therapy
 - Scintillators
 - TLDs
 - Diamond detectors
 - OSLDs
- Pulsed charge or AC current electrometer scales
- System calibrations for therapy ion chambers with supplied electrometers
Why not diodes?

• Not a reference dosimeter (according to the TG51 addendum)
 – Temperature dependencies (among other things) affect the calibration
 – Energy dependence (k_Q values) not available
The “Value” in Your Calibration Report

• Financial
 – The ADCLs receive no financial support from the AAPM.
 – It requires huge efforts to calibrate a dosimetry instrument with the necessary uncertainties to treat patients safely.
 – Calibration staff are highly trained technical experts
 – Constant intercomparisons
 – QA testing
 – Redundant checks and more redundancy checks
 – Administrative overhead
 – Licensed for various high-activity radionuclides
The “Value” in Your Calibration Report

• The Calibration Coefficient
 – If its new equipment, we compare with an average of other chamber models
 – If it is a repeat calibration, and it was in our lab, we have agreement thresholds
 • Example for Co-60 ADW is 0.6%, which is the AAPM mandated ADCL uncertainty component
 • Varies for calibration type
 – Physicist contacted if outside of thresholds
60Co Calibrations

- Resin beads to reduce evaporation
- Horizontal beam line
- Replacement technique
- Plumb bob lines
- Thermometer & barometer
Electrometer Calibrations

- **Charge calibration**
 - NIST-traceable calibrated capacitor
 - NIST-traceable voltage source

- **Current calibration**
 - NIST-traceable calibrated current source

- **No pulsed-mode calibrations available due to lack of NIST standard**
 - Same for all ADCLs
Practical Considerations

• It's not just a number
 – Your calibration coefficients give an indication of the response of your equipment.
 – The $N_{D,W}$ is the largest component of the uncertainty in TG-51 measurements (McEwen et al 2014)
 – Be a scientist, not a technologist.
 – Look for trends, outliers, and anything that just doesn’t make sense

• An ADCL is not meant to be a repair shop
 – If you think your equipment is malfunctioning, contact the manufacturer

• ADCL staff is there to answer questions at any time

• UWADCL has a booth at AAPM to see what’s new and answer questions
Manufacturer Calibrations

• Many manufacturers will offer NIST-traceable (or other PSDL-traceable) calibrations
• If it’s a U.S. company, these will not be an SSDL or ADCL.
• If it’s a European company, it may be traceable to another PSDL (NPL, PTB, etc.)
• What assurance do you have that these values are accurate?
• Issues without the AAPM infrastructure in place
 1) No routine round-robin testing
 2) No AAPM credentialing / site visits by experts
 3) May not be legally acceptable
Linac-based Calibrations?

- Has been debated in the Medical Physics Journal
- The pros:
 - Beam-quality factors (k_Q) for a physicist’s chamber can be measured, which is appealing
- The cons:
 - Instabilities of commercial medical linac platforms adds uncertainty
 - Beam quality of customer’s linac not necessarily the same as the ADCL or NIST linac. Need multiple data points for a proper calibration
 - K_Q uncertainties are low, 0.3% agreement between experimental and measurements across NE2571 chambers by Muir et al in 2010
Conclusions

- The world of calibration laboratories is complex, but well serving
- North America maintains its own system of ADCLs, which are accredited by the AAPM CLA subcommittee
- The ADCLs are there to serve their customers and members of the AAPM