

Session: ADCL Calibrations – More than Just a Number

Wesley Culberson, PhD, DABR, FAAPM

Associate Professor, Department of Medical Physics, University of Wisconsin – Madison Director, University of Wisconsin Accredited Dosimetry Calibration Laboratory

July 14, 2020

What is an ADCL?

- Accredited Dosimetry Calibration Laboratory (the SSDL equivalent in North America but different...)
- Accredited by the AAPM
- Provides calibrations to users for instruments and radioactive sources for dosimetry in radiotherapy and diagnostic imaging
- Currently three ADCLs:
 - University of Wisconsin (Madison)
 - K&S Associates (Nashville)
 - MD Anderson Cancer Center (Houston)

SSDLs vs ADCLs

- ADCLs
 - Provide everything that an SSDL would provide, PLUS
 - Independent of instrument manufacturers
 - Provide technical support to AAPM members
 - Proficiency Tests
- The result: ADCLs provide unbiased and knowledgeable resources for instrument purchases and guidance

AAPM CLA

- Main forum for discussion of issues relating to calibration of ion chambers and brachytherapy sources
- An assembly of metrology experts

Side note: Possible restructuring in the AAPM may involve the transition to a "Metrology" subcommittee.

What does the CLA do?

• Develops criteria

- Recommends (to AAPM BOD) accreditation for ADCL laboratories
- Carries out assessment visits
- Monitors performance
- Makes recommendations
- Highly technical in nature

What the CLA doesn't do?

- Does not set prices
- Does not recommend any one ADCL over another
- Does not distinguish between commercial and academic organizations
- Does not try to "spread the business around"

What the ADCLs will not do?

- Does not calibrate solid state radiation detectors
 - Solid state diagnostic instruments
 - Diodes for radiation therapy
 - Scintillators
 - TLDs
 - Diamond detectors
 - OSLDs
- Pulsed charge or AC current electrometer scales
- System calibrations for therapy ion chambers with supplied electrometers

Why not diodes?

- Not a reference dosimeter (according to the TG51 addendum)
 - Temperature dependencies (among other things) affect the calibration
 - Energy dependence (k_Q values) not available

The "Value" in Your Calibration Report

- Financial
 - The ADCLs receive no financial support from the AAPM.
 - It requires huge efforts to calibrate a dosimetry instrument with the necessary uncertainties to treat patients safely.
 - Calibration staff are highly trained technical experts
 - Constant intercomparisons
 - QA testing
 - Redundant checks and more redundancy checks
 - Administrative overhead
 - Licensed for various high-activity radionuclides

The "Value" in Your Calibration Report

- The Calibration Coefficient
 - If its new equipment, we compare with an average of other chamber models
 - If it is a repeat calibration, and it was in our lab, we have agreement thresholds
 - Example for Co-60 ADW is 0.6%, which is the AAPM mandated ADCL uncertainty component
 - Varies for calibration type
 - Physicist contacted if outside of thresholds

⁶⁰Co Calibrations

- Resin beads to reduce evaporation
- Horizontal beam line
- Replacement technique
- Plumb bob lines
- Thermometer & barometer

Ŷ

0

11 of 16

Electrometer Calibrations

- Charge calibration
 - NIST-traceable calibrated capacitor
 - NIST-traceable voltage source
- Current calibration
 - NIST-traceable calibrated current source
- No pulsed-mode calibrations available due to lack of NIST standard
 - Same for all ADCLs

Practical Considerations

- Its not just a number
 - Your calibration coefficients give an indication of the response of your equipment.
 - The $N_{D,W}$ is the largest component of the uncertainty in TG-51 measurements (McEwen et al 2014)
 - Be a scientist, not a technologist.
 - Look for trends, outliers, and anything that just doesn't make sense
- An ADCL is not meant to be a repair shop
 - If you think your equipment is malfunctioning, contact the manufacturer
- ADCL staff is there to answer questions at any time
- UWADCL has a booth at AAPM to see what's new and answer questions

Manufacturer Calibrations

- Many manufacturers will offer NIST-traceable (or other PSDL-traceable) calibrations
- If it's a U.S. company, these will not be an SSDL or ADCL.
- If it's a European company, it may be traceable to another PSDL (NPL, PTB, etc.)
- What assurance do you have that these values are accurate?
- Issues without the AAPM infrastructure in place
 - 1) No routine round-robin testing
 - 2) No AAPM credentialing / site visits by experts
 - 3) May not be legally acceptable

Linac-based Calibrations?

- Has been debated in the Medical Physics Journal
- The pros:
 - Beam-quality factors (k_Q) for a physicist's chamber can be measured, which is appealing
- The cons:
 - Instabilities of commercial medical linac platforms adds uncertainty
 - Beam quality of customer's linac not necessarily the same as the ADCL or NIST linac. Need multiple data points for a proper calibration
 - K_Q uncertainties are low, 0.3% agreement between experimental and measurements across NE2571 chambers by Muir et al in 2010

Conclusions

- The world of calibration laboratories is complex, but well serving
- North America maintains its own system of ADCLs, which are accredited by the AAPM CLA subcommittee
- The ADCLs are there to serve their customers and members of the AAPM

