Using AI as a tool for the Dx Medical Physicist

Samuel Brady, M.S. Ph.D. DABR samuel.brady@cchmc.org 7/14/2020

Terminology

• Artificial intelligence (AI)

A branch of computer science that explores the ability for a computer/machine to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, etc.

- Al is an umbrella term for machine learning and deep learning

The Promises of Artificial Intelligence

- Why have this conversation now?
 - Artificial Intelligence (AI) has the potential of being a disruptive force in medicine and radiology specifically
 - It WILL be a central player in medicine in the future
 - It WILL be used on all our imaging devices
 - It WILL be on all our PACs systems
 - It WILL be used as an algorithm behind the scenes controlling everything from supply management, billing, to medical management (both Dx and Tx)

The Promises of Artificial Intelligence

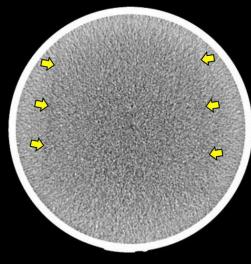
- The medical physicist (MP) is, generally, the technology consult to the department
 - We need to know how to use AI
 - We need to know how to manage AI

• But what about using AI to our advantage?

The Promises of Artificial Intelligence

- How can AI help the Dx MP?
 - Reduce workload by performing repetitive tasks:
 - Clinical patient image quality (IQ) review
 - Analyze routine phantom data [e.g., daily/weekly MRI, CT, Nuc Med artifact review]
 - Find trends
 - Enterprise CT dosimetry [e.g., Radimetrics-like software is passive]
 - Inconsistent protocol parameters
 - Artifacts coming from one scanner
 - Act as a normalizer
 - Provide help for institutions w/o full time MP
 - Provide help for institutions w/ only one (over worked) MP




Terminology

• Machine learning (ML)

An application of AI that uses computer programing and statistics to train a computer algorithm to learn and improve without being explicitly programmed.

- Limitation: e.g., to train for artifact recognition, requires careful feature selection
 - Difficult to account for different types of artifacts
 - Same artifact may appear differently on different scanners, vendors, & institutions
 - Algorithm will be best suited to detect what it has been trained to find

James M. Kofler, Ph.D. Mayo Clinic Rochester

Terminology

Deep learning convolution neural network (DCNN)

Is an ML technique that has a learning structure similar to the human brain (using neural networks). Improves with larger "deeper" sets of data

- Emulate human visual feature extraction
- Requires more computing power than ML
- Requires large data sets w/ normal and non-normal images
 - Transfer learning allows for retooling a previously trained network by re-training a subset of parameters using a smaller data set

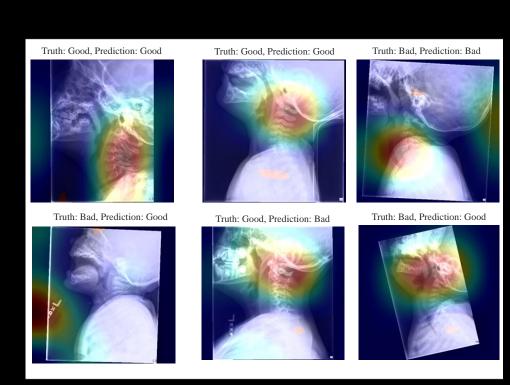
Transfer Learning

- General transfer learning principles
 - Early DCNN layers learn low-level features common to most computer vision problems
 - Later DCNN layers learn high-level features which are more applicationspecific
 - Thus, adjusting the last few layers of a DCNN is how you "transfer" the networks knowledge to your specific task
 - Good networks to use for transfer learning:
 - VGGNet, ResNet, Inception, Xcaption
 - Each network was pretrained on ImageNet
 - Good networks for feature extraction and classification tasks

Tajbakhsh, N., et al. IEEE transactions on medical imaging 2016 35(5): 1299-1312.

Transfer Learning

- Two approaches to AI network generation:
- 1. Unsupervised AI (less common)
 - Group unsorted information according to similarities, patterns and differences w/o prior training of data
 - Use unsupervised AI to:
 - Identify specific imaging protocols that are different using natural language processing
 - Cannot be used for regression or classification
 - Algorithm does not know what is "Truth"



Google

Transfer Learning

- Two approaches to AI model generation:
- 2. Supervised Al
 - Specifically train algorithms to look for:
 - Key features as they appear in an image
 - Images have adequate contrast and signal
 - Patients are positioned correctly
 - Etc.
 - Requires collaboration between MP and Radiologists to establish "truth"



Somasundaram, E et al. Radiology:Al 2020 (In press)

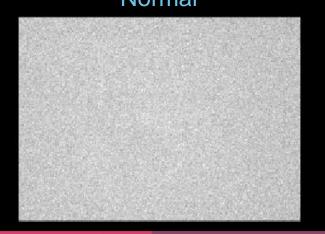
Al for DX MP

- Clinical patient image quality (IQ) review
 - Analyze routine phantom data
 - E.g., daily/weekly MRI, CT, Nuc Med artifact review

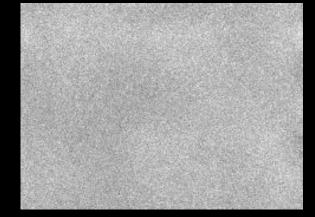
Al for DX MP

- Clinical patient image quality (IQ) review
 - 1. Collect all images in a local repository
 - Even small clinics will generate thousands of images a year
 - Produces large data sets for data mining
 - Data stored on PACS is not readily accessible for DL use (requires personnel to move around)
 - Its very easy to set up "rules" so that when a QC image is sent to PACS it will be autorouted to a computer node
 - You can set up a computer in your office to act as a node/repository
 - » Cheaper than purchasing a server
 - » Limitation is that normal computers don't come w/ RAID redundancy and limited automated backup capabilities

Implementation

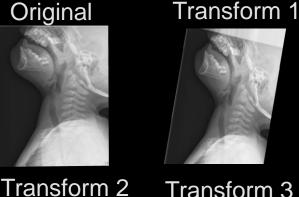

- Set up simple scripts:
 - Process data
 - Back up computer
 - Etc.
 - Use Computer Management
 - Create a "Task"
 - Set "Triggers"
 - » e.g., specific times of the day
 - Set "Actions"
 - » Run batch files

	Open						
	Pin to Quick access						
•	Manage						
	Unpin from Start						
-	Cisco AMP For Endpoin	co AMP For Endpoints >					
	Map network drive 🛃 Computer Management						
	Disconnect network driv	File Action View	Help				
	Create shortcut 🗢 🔿 📶 🛛 🗊						
	Delete	🜆 Computer Managem	ent (Local	Name	Status	Triggers	
	Rename	✓ [™]		Epic TempD		At 4:01 AM on 6/8/2020 - After trig	
	Properties	V 🕑 Task Schedule				At 9:39 PM every day - After trigger	
	riopenties	> 🔀 Task Scher > 🔝 Event Viewer	duler Libra		-	At 9:48 PM every day - After trigger	
		> 👸 Event Viewer	s		-	Multiple triggers defined	
		> 👰 Local Users ar		🕒 GoogleUpda	Ready	At 5:11 PM every day - After trigger	
		> 🔕 Performance		🕒 NvNgxUpda	Ready	At 12:25 PM every day	
		🛔 Device Manag	ger 🛛	🕒 nWizard_{B2	Ready	At log on of any user	
	✓ Storage		🕒 OneDrive St	Ready	At 4:00 PM on 5/1/1992 - After trigg		
		📅 Disk Manager		🕒 OneDrive St	Ready	At 10:00 AM on 5/1/1992 - After trig	
		> 🚡 Services and App	lications	<			
				General Triggers	1	ns Conditions Settings History	



AI for DX MP

- Clinical patient image quality (IQ) review ullet
 - 2. Train images to identify normal vs. abnormal
 - To train a network to identify the type/class of artifact requires manual labeling of data set
 - Very time consuming
 - Instead train the network to identify "abnormal" and flag the image for review by an MP
 - Establish a regression analysis of the probability for abnormal
 - In this example: want to minimize false negatives (i.e., maximize the Recall rate) \bullet Normal


Abnormal

AI for DX MP

- Clinical patient image quality (IQ) review ullet
 - 3. Training requires handling of imbalanced data sets
 - Normal artifact-free data abundance is typically > 99%
 - Need multi-institutional data sets to prevent overfitting to local data
 - Under-sample normal data set
 - Over-sample the abnormal data set •
 - Data Augmentation
 - Augment or add to the data set by adding variation to the data set
 - Now one image will = 10s to 100s of images
 - Common: flip, rotate, zoom, shift, etc.

Somasundaram, E et al. Radiology:Al 2020 (In press)

Implementation

- Challenges for DL broad scale implementation → TRUTH
 - What is "truth" and who dictates it?
 - Option 1: Based on MP consensus
 - Need to analyze inter-observer accuracy
 - Need multi-institutional
 - Need multi-platform/vendor review
 - Option 2: Based on DL algorithm consensus
 - Compare multiple algorithms

Conclusion

- To implement AI in our daily practice you need to think like a computer
 - Look at our daily systems, what is automatable?
 - Remember, the task(s) MUST be structured for easy data access
 - Need to develop repositories and label our "data"
- For clinical AI, the roles for Medical Physicists are not established yet
 - Now is the time to define OUR role
 - Increasingly requires MP to interface and work with AI
 - You will need to learn the language of Al

Thank you

samuel.brady@cchmc.org

