Insight from Industry

How **NOT** to promote the Safe & Effective Adoption of Radiotherapy in LMICs

Cleverson Lopes
Marketing Manager,
Varian Oncology Systems
How **NOT** to promote the Safe & Effective Adoption of Radiotherapy in LMICs?

Cancer burden

Ignoring the cancer problem!

1 of every two males

and

1 of every three females

will have cancer at some point in their lives*

How **NOT** to promote the Safe & Effective Adoption of Radiotherapy in LMICs?

Cancer burden

Ignoring the cancer problem!

1 of every two males and 1 of every three females will have cancer at some point in their lives*

Cancer burden HDI

2018

- **High and Upper Middle Income countries**
 - 14.4 million cases
 - 7.1 million deaths

- **Low and Medium Low Income countries**
 - 3.6 million cases
 - 2.4 million deaths

Cancer burden HDI

2018

High and Upper Middle Income countries

- 14.4 million cases
- 7.1 million deaths

Low and Medium Low Income countries

- 3.6 million cases
- 2.4 million deaths

Cancer burden can’t be ignored

*Latin America only

Relative to most developed countries

49% Chile’s mortality-to-incidence ratio

Double mortality rate

Up to 1.0M Deaths

By 2030

People will develop cancer

1.7M

67% Increase in Cancer incidence

By 2030

Half of patients

Doesn’t have access to radiotherapy

US$1.98

$18,80 for US

RT Cost per capita

50% machine’s

Are becoming obsolete

by 2021*

Human capital
Don’t ignore the investment in human

<table>
<thead>
<tr>
<th>What is Needed</th>
<th>2015</th>
<th>GAP</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Oncology Centers</td>
<td>7,700</td>
<td>3,200</td>
<td>10,900</td>
</tr>
<tr>
<td>Linear Accelerators</td>
<td>13,100</td>
<td>21,800*</td>
<td>21,800</td>
</tr>
<tr>
<td>Radiation Oncologists</td>
<td>23,200</td>
<td>22,300</td>
<td>45,500</td>
</tr>
<tr>
<td>Medical Physicists</td>
<td>10,000</td>
<td>29,300</td>
<td>39,300</td>
</tr>
<tr>
<td>Radiation Technologists</td>
<td>33,300</td>
<td>96,900</td>
<td>130,200</td>
</tr>
</tbody>
</table>

People, AI and data are key to closing the gap

✓ Quality
✓ Simplicity
✓ Efficiency
✓ Automation

Source: Expanding global access to radiotherapy. Lancet Oncol. Vol 16, Sept. 2015
* 8,700 new machines + 13,100 replacements = 21,800 machines needed
The information presented here represents only the ideas of the author.

Source: Expanding global access to radiotherapy. The Lancet Oncology Commission.
Language
Software, GUI, message displays, training and manuals

Product design
Easy to operate, integrated, rich messages and reliable

Staff Training and support
Clinical and technical

Maintenance and Logistics
Proper parts and labor

Don't value technology investments
Language
Software, GUI, message displays, training and manuals

Product design
Easy to operate, integrated, rich messages and reliable

Staff Training and support
Clinical and technical

Maintenance and Logistics
Proper parts and labor
Language
Software, GUI, message displays, training and manuals

Product design
Easy to operate, integrated, rich messages and reliable

Staff Training and support
Clinical and technical

Maintenance and Logistics
Proper parts and labor
Language
Software, GUI, message displays, training and manuals

Product design
Easy to operate, integrated, rich messages and reliable

Staff Training and support
Clinical and technical

Maintenance and Logistics
Proper parts and labor
Language
Software, GUI, message displays, training and manuals

Product design
Easy to operate, integrated, rich messages and reliable

Staff Training and support
Clinical and technical

Maintenance and Logistics
Proper parts and labor
Language
Software, GUI, message displays, training and manuals

Product design
Easy to operate, integrated, rich messages and reliable

Staff Training and support
Clinical and technical

Maintenance and Logistics
Proper parts and labor
Language
Software, GUI, message displays, training and manuals

Product design
Easy to operate, integrated, rich messages and reliable

Staff Training and support
Clinical and technical

Maintenance and Logistics
Proper parts and labor
Language
- Software, GUI, message displays, training and manuals

Product design
- Easy to operate, integrated, rich messages and reliable

Staff Training and support
- Clinical and technical

Maintenance and Logistics
- Proper parts and labor
Industry role
Challenges for rt adoption

LMICS

<table>
<thead>
<tr>
<th>Radiotherapy Personnel</th>
<th>Geographic coverage</th>
<th>Country costs and Financial limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unprepared, unengaged - no stimulus for implementation</td>
<td>• Geographical distribution of local support</td>
<td>• Product registration Costly and lengthily</td>
</tr>
<tr>
<td>• Language barriers</td>
<td>• Training and maintenance in remote area</td>
<td>• Customs challenges</td>
</tr>
<tr>
<td>• No continuous education programs</td>
<td>• Slow shipment and customs</td>
<td>• Low credit available</td>
</tr>
<tr>
<td>• Low cooperation</td>
<td></td>
<td>• Low reimbursement – constrained budgets for purchasing capital equipment, maintenance, additional training</td>
</tr>
<tr>
<td>• Very low scientific production locally leads to lower reimbursement levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges of the industry

LMICS

<table>
<thead>
<tr>
<th>Radiotherapy Personnel</th>
<th>Geographic coverage</th>
<th>Country costs and Financial limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unprepared (3D -> VMAT)</td>
<td>• Geographical distribution of local engineers</td>
<td>• Product registration Costly and lengthily</td>
</tr>
<tr>
<td>• Unengaged - no stimulus for implementation</td>
<td>• Training and maintenance in remote area</td>
<td>• Customs challenges</td>
</tr>
<tr>
<td>• Language barriers</td>
<td>• Slow shipment and customs</td>
<td>• Low credit available</td>
</tr>
<tr>
<td>• No continuous education programs</td>
<td></td>
<td>• Low reimbursement – constrained budgets for purchasing capital equipment, maintenance, additional training</td>
</tr>
<tr>
<td>• Low cooperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Very low scientific production locally leads to lower reimbursement levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges of the industry

LMICS

<table>
<thead>
<tr>
<th>Radiotherapy Personnel</th>
<th>Geographic coverage</th>
<th>Country costs and Financial limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unprepared (3D -> VMAT)</td>
<td>• Geographical distribution of local engineers</td>
<td>• Product registration Costly and lengthily</td>
</tr>
<tr>
<td>• Unengaged - no stimulus for implementation</td>
<td>• Training and maintenance in remote area</td>
<td>• Customs challenges</td>
</tr>
<tr>
<td>• Language barriers</td>
<td>• Slow shipment and customs</td>
<td>• Low credit to purchase equipment</td>
</tr>
<tr>
<td>• No continuous education programs</td>
<td></td>
<td>• Low reimbursement – constrained budgets for purchasing capital equipment, maintenance, additional training</td>
</tr>
<tr>
<td>• Low cooperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Very low scientific production locally leads to lower reimbursement levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges of the industry

LMICS

<table>
<thead>
<tr>
<th>Radiotherapy Personnel</th>
<th>Geographic coverage</th>
<th>Country costs and Financial limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprepared (3D -> VMAT)</td>
<td>Geographical distribution of local engineers</td>
<td>Product registration Costly and lengthily</td>
</tr>
<tr>
<td>Unengaged - no stimulus for implementation</td>
<td>Training and maintenance in remote area</td>
<td>Customs challenges</td>
</tr>
<tr>
<td>Language barriers</td>
<td>Slow shipment and customs</td>
<td>Low credit to purchase equipment</td>
</tr>
<tr>
<td>No continuous education programs</td>
<td></td>
<td>Low reimbursement – constrained budgets for purchasing capital equipment, maintenance, additional training</td>
</tr>
<tr>
<td>Low cooperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very low scientific production locally leads to lower reimbursement levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges of the industry

LMICS

<table>
<thead>
<tr>
<th>Radiotherapy Personnel</th>
<th>Geographic coverage</th>
<th>Country costs and Financial limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unprepared (3D -> VMAT)</td>
<td>• Geographical distribution of local engineers</td>
<td>• Product registration Costly and lengthily</td>
</tr>
<tr>
<td>• Unengaged - no stimulus for implementation</td>
<td>• Training and maintenance in remote area</td>
<td>• Customs challenges</td>
</tr>
<tr>
<td>• Language barriers</td>
<td>• Slow shipment and customs</td>
<td>• Low credit to purchase equipment</td>
</tr>
<tr>
<td>• No continuous education programs</td>
<td></td>
<td>• Low reimbursement – constrained budgets for purchasing capital equipment, maintenance, additional training</td>
</tr>
<tr>
<td>• Low cooperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Very low scientific production locally leads to lower reimbursement levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges of the industry

LMICS

<table>
<thead>
<tr>
<th>Radiotherapy Personnel</th>
<th>Geographic coverage</th>
<th>Country costs and Financial limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprepared (3D -> VMAT)</td>
<td>Geographical distribution of local engineers</td>
<td>Product registration Costly and lengthily</td>
</tr>
<tr>
<td>Unengaged - no stimulus for implementation</td>
<td>Training and maintenance in remote area</td>
<td>Customs challenges</td>
</tr>
<tr>
<td>Language barriers</td>
<td>Slow shipment and customs</td>
<td>Low credit to purchase equipment</td>
</tr>
<tr>
<td>No continuous education programs</td>
<td></td>
<td>Low reimbursement – constrained budgets for purchasing capital equipment, maintenance, additional training</td>
</tr>
<tr>
<td>Low cooperation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very low scientific production locally leads to lower reimbursement levels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Industry role in LMICs

High-quality
Advanced treatment on entry level equipment’s, better image quality and scripted AI, contouring, planning & monitoring

Patient Centered
Improve patient comfort, personalization, reduce planning and treatment time

Safety
Solutions with Intuitive design, appropriate language and adequate services – Market

Cost & Effective
Develop technologies that attend the urgent needs of today

Timely – High availability
Fast installation, adequate training, well defined QA, pre-commissioned machines, remote service monitoring

Collaboration
Create a network of partners. Customers, governments, patients and professional associations
Industry role in LMICs

High-quality
Advanced treatment on entry level equipment’s, better image quality and scripted AI, contouring, planning & monitoring

Patient Centered
Improve patient comfort, personalization, reduce planning and treatment time

Timely – High availability
Fast installation, adequate training, well defined QA, pre-commissioned machines, remote service monitoring

Safety
Solutions with Intuitive design, appropriate language and adequate services – Market

Cost & Effective
Develop technologies that attend the urgent needs of today

Collaboration
Create a network of partners. Customers, governments, patients and professional associations
Industry role in LMICs

High-quality
Advanced treatment on entry level equipment’s, better image quality and scripted AI, contouring, planning & monitoring

Patient Centered
Improve patient comfort, personalization, reduce planning and treatment time

Timely – High availability
Fast installation, adequate training, well defined QA, pre-commissioned machines, remote service monitoring

Safety
Solutions with Intuitive design, appropriate language and adequate services – Market

Cost & Effective
Develop technologies that attend the urgent needs of today

Collaboration
Create a network of partners. Customers, governments, patients and professional associations

The information presented here represents only the ideas of the author.
Industry role in LMICs

High-quality
Advanced treatment on entry level equipment’s, better image quality and scripted AI, contouring, planning & monitoring

Patient Centered
Improve patient comfort, personalization, reduce planning and treatment time

Safety
Solutions with Intuitive design, appropriate language and adequate services – Market

Cost & Effective
Develop technologies that attend the urgent needs of today

Collaboration
Create a network of partners. Customers, governments, patients and professional associations

Timely – High availability
Fast installation, adequate training, well defined QA, pre-commissioned machines, remote service monitoring
Industry role in LMICs

High-quality
Advanced treatment on entry level equipment's, better image quality and scripted AI, contouring, planning & monitoring

Patient Centered
Improve patient comfort, personalization, reduce planning and treatment time

Safety
Solutions with Intuitive design, appropriate language and adequate services – Market

Cost & Effective
Develop technologies that attend the urgent needs of today

Timely – High availability
Fast installation, adequate training, well defined QA, pre-commissioned machines, remote service monitoring

Collaboration
Create a network of partners. Customers, governments, patients and professional associations

The information presented here represents only the ideas of the author.
Industry role in LMICs

High-quality
Advanced treatment on entry level equipment’s, better image quality and scripted AI, contouring, planning & monitoring

Patient Centered
Improve patient comfort, personalization, reduce planning and treatment time

Safety
Solutions with Intuitive design, appropriate language and adequate services – Market

Cost & Effective
Develop technologies that attend the urgent needs of today

Timely – High availability
Fast installation, adequate training, well defined QA, pre-commissioned machines, remote service monitoring

Collaboration
Create a network of partners. Customers, governments, patients and professional associations

The information presented here represents only the ideas of the author.
Industry role in LMICs

High-quality
Advanced treatment on entry level equipment’s, better image quality and scripted AI, contouring, planning & monitoring

Patient Centered
Improve patient comfort, personalization, reduce planning and treatment time

Safety
Solutions with Intuitive design, appropriate language and adequate services – Market

Cost & Effective
Develop technologies that attend the urgent needs of today

Timely – High availability
Fast installation, adequate training, well defined QA, pre-commissioned machines, remote service monitoring

Collaboration
Create a network of partners. Customers, governments, patients and professional associations
Innovation driving increasing overall cancer survival
A world without fear of cancer is on our horizon

Sources:
Survival Data: (1) National Cancer Institute’s SEER*Stat 8.3.4 databases, (2) Genomic Health Clinical Validation Trials, (3) Roche IMpassion 130 trial, additional on file

*Forecasted survival rate based on increases in treatment efficacy (Phase 2/3 data) and liquid biopsy availability. Artificial lungs, livers, and pancreas are under development but are not expected to be commercialized by 2027.

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>1977</th>
<th>1987</th>
<th>1997</th>
<th>2007</th>
<th>Today</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>570K cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99.9%</td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99%</td>
</tr>
<tr>
<td>868K cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91%</td>
</tr>
<tr>
<td>704K cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>948K cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>403K cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>176K cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 year overall survival

0% 20% 40% 60% 80% 100%

99.9% 99% 91% 38% 29% 17%