MEDomics

Towards Self-Cognizant Hospitals in the Treatment of Cancer

Olivier Morin, PhD

Chief of Physics, Interim University California San Francisco, CA, USA

Joint AAPM | COMP Annual Meeting July 15th, 2020

www.medomics.ai

Lab Efforts

Main Collaborators

UCSF RadOnc:

- Catherine Park, MD
- Jorge Barrios, PhD
- Taman Upadhaya, PhD
- Steve Braunstein, MD PhD
- Sue Yom, MD
- David Raleigh, MD PhD
- Joe Hsu, MD
- Gilmer Valdes, PhD
- Jean Nakamura, MD
- Jason Chan, MD
- Penny Sneed, MD
- Lijun Ma, PhD
- Benjamin Ziemer, PhD

UCSF Radiology/surgery:

- Javier Villanueva-Meyer MD
- Spencer Behr, MD
- Janine Luppo, PhD
- Antonio Carlos Westphalen, MD
- Michael McDermott, MD

D-Lab/Maastricht U:

- Philippe Lambin, MD
- Simon Keek, PhD student
- Henry Woodruff, PhD
- Abdalla Ibrahim, MD PhD
- Avishek Chatterjee, PhD

McGill/Sherbrooke:

- Martin Vallières, PhD
- Jan Seuntjens, PhD

Dresden, Germany

- Alexander Zwanenburg, PhD
- Steffen Lock, PhD

USF (data science):

- Yannet Interian, PhD
- Jeremy Howard, PhD

Point-of-Care Opportunities

- Many statistical models have been developed.
- Few have been integrated in the clinic.
- My lab is studying various point-of-care interventions using informatics.

Oncology

Today

- Increasingly digital, not always accessible, not centralized
- Single shot research
- Transactional
- Advances driven mainly by clinical trials
- Complex, for all
- Frustrating, for patients

Future

- Fully digital and accessible
- Technologies employed for data centralization and governance
- Advances driven by clinical trials but also influenced by real-world data
- Complexity will be increasingly hidden
- Quality will be assessed in real-time
- Participatory, data ownership?

Where do we start?

Self-Cognizant Hospitals

having knowledge and being aware of itself and its goals

- Have clear rules on the data needed for each medical intervention and decision.
- Missing data will be identified and collected.
- Data quality will be assessed and corrected.
- Data will be synthesized (MEDomics).
- Hospital value/cost and performance (patient quality of life) will be measured and compared to regional/national/international trends.

MEDomics Animation: https://youtu.be/2030Pdgm3_4

Meningioma example

Morin O, Chen WC, Nassiri F, et al. Integrated models incorporating radiologic and radiomic features predict meningioma grade, local failure, and overall survival. *Neurooncol Adv* 2019; 1(1): vdz011.

RADIOMICS BASELINE

Model analysis module

We need data!

We need diverse data with labels!

TABLE	# ROWS
Allergy	150k
Encounters	3 M
Family	430k
Imaging	1.7M
Labs	200M
Medical	670k
Medication	15M
Micro	9M
Notes	12.2M
Pathology	860k
Patient	159k
Problem	681k
Procedures	89k
Social	115k
Surgical	300k
Radiation	42k
Charges	636M

IRB Number: 18-25441, 18-26489

Tine		ICD10CM	Description		
		I10	Essential (primary) hypertension		
		C50919	Malignant neoplasm of unspecified site of unspecified female breast		
		C61	Malignant neoplasm of prostate		
		Z7189	Other specified counseling		
		C73	Malignant neoplasm of thyroid gland		
		Z0000	Encounter for general adult medical examination without abnormal findings		
		C719	Malignant neoplasm of brain, unspecified		
		E785	Hyperlipidemia, unspecified		
		C3490	Malignant neoplasm of unspecified part of unspecified bronchus or lu		
		R52	Pain, unspecified		
		K5900	Constipation, unspecified		
		Z66	Do not resuscitate		
		D649	Anemia, unspecified		
		E119	Type 2 diabetes mellitus without complications		
		C439	Malignant melanoma of skin, unspecified		
		D496	Neoplasm of unspecified behavior of brain		
		Z5111	Encounter for antineoplastic chemotherapy		
		F329	Major depressive disorder, single episode, unspecified		
		E039	Hypothyroidism, unspecified		
		K219	Gastro-esophageal reflux disease without esophagitis		
		Z789	Other specified health status		
		F419	Anxiety disorder, unspecified		

Find immunotherapy drug hits

- 1 select demographic.mrn, medication_startdate, medication_name, medication_route from qipm.demographic
- 2 join qipm.medication on demographic.mrn = medication.mrn
- 3 where medication_name ilike '%Ipilimumab%'
- 4 or medication_name ilike '%Nivolumab%'
- 5 or medication_name ilike '%Pembrolizumab%'
- 6 or medication_name ilike '%Atezolizumab%'
- 7 or medication_name ilike '%Avelumab%'
- 8 or medication_name ilike '%Durvalumab%'

Success

2799 rows

mrn	medication_startdate	medication_name	medication_route
	2018-03-14	NIVOLUMAB 100 ML IVPB	Intravenous
	2018-02-21	PEMBROLIZUMAB 50 ML IVPB	Intravenous
	2017-12-27	PEMBROLIZUMAB 50 ML IVPB	Intravenous
	2017-12-27	NIVOLUMAB 100 ML IVPB	Intravenous
	2017-09-27	NIVOLUMAB 100 ML IVPB	Intravenous
	2018-01-26	NIVOLUMAB 100 ML IVPB	Intravenous
	2017-09-19	PEMBROLIZUMAB 50 ML IVPB	Intravenous

SQL

Data

Explore

Chart

Export *

Careful Patient Selection

Lung Cancer

Immunotherapy

Framingham Risk

MEDomics: preliminary results

Breast Cancer

Lung Cancer

Exploring Medical Notes

Example of radiology extract:

CT BRAIN WITHOUT CONTRAST: 4/23/2018 2:57 AM CLINICAL HISTORY: Concern for change in ventricular size. COMPARISON: CT brain 4/22/2018. TECHNIQUE: Helical CT imaging of the brain without intravenous contrast. Coronal and sagittal reformatted images were obtained. CONTRAST MEDIA: None. RADIATION DOSE INDICATORS: 1 exposure event(s), CTDIvol: 54.2 mGy. DLP: 1058 mGy-cm. FINDINGS: Parenchyma: No new intracranial hemorrhage or large vessel territory hypodensity. Left frontal EVD with tip terminating near the foramen of Monro, unchanged. Sequela of prior aneurysm clipping. Unchanged appearance of the sunken right cerebral hemisphere. Ventricles: Unchanged lateral ventricular size is Extra-axial collection: Unchanged size and appearance of left-sided extra-axial collection with previous SEPS device. Orbits and globes: Unremarkable. Paranasal sinuses and mastoid air cells: Fluid in the bilateral mastoid air cells. Bones: Sequela of prior right hemicraniectomy. Soft tissues: Unremarkable

Example of pathology extract:

UNIVERSITY OF CALIFORNIA SAN FRANCISCO DEPARTMENT OF PATHOLOGY 1600 DIVISADERO STREET Room: R-200, Box: 1785 SAN FRANCISCO, CA 94115-1785 TEL: (415) 885-7301 FAX: (415) 353-7676 CYTOPATHOLOGY REPORT Patient Name:XXXXXXXXXXX J. Med. Rec.#: XXXXXX DOB: XXXXXXX (Age: 32) Sex: X Accession #: XXXXXX Visit #: XXXXXX Service Date: 4/18/2018 Received: 4/19/2018 Location: SU8 Client: Parnassus Physician(s): XXXXXXXXXXX ((415) 885-7788) Source of Specimen: Cervical, ThinPrep FINAL CYTOLOGIC INTERPRETATION/RESULT: A: Cervical, ThinPrep ATYPICAL SQUAMOUS CELLS OF evaluation. Transformation zone components are present. COMMENTS: The specimen will be sent for high risk HPV testing with HPV16/18 genotyping. Please refer to the separate report for results. Clinical History Date of Last Menstrual Period: 4/7/2018 1 Thin Prep Pap. Co-test with reflex 16/18 genotyping in women 30 years and older, if Pap negative and high risk HPV is positive History Abnormal Pap?: No Treatment: Not Applicable Submitting Diagnosis: ICD-10-CM:Z12.4:Encounter for screening for malignant neoplasm of cervix Number of slides: 1 The Pap test is a screening test to aid in the detection of anogenital cancers and their precursors. Both falsenegative and false-positive results have been experienced. The Pap should not be used as the sole means to detect anogenital cancers; regular periodic testing and follow-up of unexplained clinical signs and symptoms is suggested. XXXXXXXX/Pathologist Electronically signed out on 4/23/2018 17:2

Need Feature Extraction -> Pattern Recognition -> Deep learning

NOTES

PATHOLOGY

IMAGING

Training Pipeline and Modelling

Breast: Predicting 5 yrs Survival, Train 401/Test 102

Glioma: Predicting 14 months Survival, Train 378/Test 107

Number of Days of Medical Text Included in the Model after Diagnosis

In Summary

- The needs for medical informatics are diverse (administrative, QI, research).
- Data governance and aggregation should be planned carefully.
- We have created a MEDomics framework:
 - To explore current and new hypotheses from real-world data.
 - To develop novel algorithms and clinical tools.
 - To take a first step towards self-cognizant and responsive EHR/OIS.