Automated Tools for Shielding Design

Matthew DeLorenzo, M.S., DABR

AAPM Annual Meeting 2020
• Introduction
• Shielding concepts
• Excel spreadsheet
• Xraybarr
• RadShield
• Future work
Shielding calculations

• Unshielded air kerma at calculation point
• Transmission Factor
• Barrier thickness

• Shielding is formulaic and repetitive
• Underlying distributions are complicated
• Layer 1: energy spectrum for each kVp

• Layer 2: multiple kVp’s used in x-ray exam room

• Layer 3: leakage, scatter, primary, isotopes

• Simplified: Transmission curves for surveyed clinical workloads
Multiple distributions

- Multiple workload distributions in the same room
 - NCRP 147 example 5.4.2: Primary floor barrier in R&F Room

- Assumes same workload distribution

- Even so, still no closed form solution
 - Xpre

- Solve iteratively to get 68 mm concrete
Thickness calculation

- Guess and test
- Linear search vs binary search

- $[0, 1, 3, 5, 19, 26, 27, 31, 32, 37, 38, 42, 51, 56, 58, 60, 67, 75, 83, 90, 99, 100]$

- Binary search is fastest way to find value in sorted array
Goal: \(K_{tr} = \frac{P}{T} = \sum_{i=0}^{N} K_u[i]B[i] \)

Units: \(\frac{mGy}{wk} \)

This is the maximum allowable weekly air kerma permitted

Method:

Guess a value for \(x \)

See how close it gets us to \(\frac{P}{T} \)

If \(K_{tr} < \frac{P}{T} \), trim some off

If \(K_{tr} > \frac{P}{T} \), put more back on

Stop when \(K_{tr} = \frac{P}{T} \) to within an error \(\epsilon \)
Binary Search

Defining boundaries

- Simple starting points: 0 and 50 mm Pb
 Slow and less elegant

- Better: consider two test thicknesses for which transmitted air kerma is above and below P/T

- Jump closer to correct value on the third calculation

\[x_{ex} \approx x_1 + \left(x_2 - x_1 \right) \frac{\ln \left(\frac{P/T}{D_1} \right)}{\ln \left(\frac{D_2}{D_1} \right)} \]
• Macro enabled workbook – visual basic

• Work NCRP example as test
- Reference other sheets for K, fitting parameter lookups

- Keep adjusting x until $K_{tr} < \frac{P}{T}$ and $\left| K_{tr} - \frac{P}{T} \right| < 10^{-4}$

$$K_{tr} = \frac{P}{T} = \sum_{i=0}^{N} K_u[i]B(x)[i]$$

- Press calculate to do binary search on thickness

NCRP 147 Example 5.4.2

Red: Rad exams only

Blue: Rad used with fluoro exam

Green: Fluoro only
Shared Control Room

Multiple Room Transmission

For one room:

One unique thickness exists such that $K_{tr} = \frac{P}{T}$

Transmitted kerma and transmission: $K_{tr} = \sum_{i=0}^{N} K_u[i]B(x)[i]$, $B = \left[e^{\alpha y x} \left(1 + \frac{B}{a} \right) - \frac{B}{a} \right]^{-\frac{1}{\gamma}}$ were functions of one variable

Infinite solutions
Shared Control Room

Strategies

• Shield to \(\frac{P}{2T} \), sum of \(K_{tr} = \frac{P}{T} \)

• Round one barrier to nearest 1/32” Pb and solve for other barrier with new dose constraint

• Solve to minimize barrier material cost

PShield: An exact three-dimensional numerical solution for determining optimal shielding designs for PET/CT facilities

Alexander S. Pasicak
Department of Radiology, The University of Tennessee Medical Center, Knoxville, Tennessee 37920

A. Kyle Jones
Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030

(Received 28 January 2012; revised 11 April 2012; accepted for publication 18 April 2012; published 11 May 2012)
• Written by DJ Simpkin – investigative use only

• Enter tube info and distances

• Custom workload distributions

• In depth look at transmission
XRAYBARR

Tube columns

Workload Distr

Distances

Scatter Dir

Results
• Check distributions, see if applicable

• Possibly investigate your institution’s workload distribution

• Dose tracking software collects rad, fluoro, IR exams
• Java software www.radshield.org

• Shielding on scaled floor plan

• Calculates K, B, x at many points
 – Beyond barriers
 – Nonadjacent rooms

• Max thickness points
RadShield

• Data entered follows NCRP 147 and TG 108
 – Checkboxes, pulldown menus

• Distances measured automatically

• Thicknesses found using binary search

• Max value for each barrier in results window
Note: tubes are almost in same location in x and y

Fluoro Tube
Rad Only
Rad used with fluoro exam

2 cm

Concrete (mm)
69.8767
Isodose Maps

- Approximately inverse square fall off
 - Method 1
 - Interpolate between isodose curves
 - Inverse square from closest curve
 - Method 2
 - Fit points to an equation (power law)

Given a function of the form

\[y = A x^b, \]

least squares fitting gives the coefficients as

\[b = \frac{\sum_{i=1}^{n} (\ln x_i \ln y_i) - \sum_{i=1}^{n} (\ln x_i) \sum_{i=1}^{n} (\ln y_i)}{\sum_{i=1}^{n} (\ln x_i)^2 - (\sum_{i=1}^{n} \ln x_i)^2}, \]

\[a = \frac{\sum_{i=1}^{n} (\ln y_i) - b \sum_{i=1}^{n} (\ln x_i)}{n}, \]

where \(B \equiv b \) and \(A \equiv e^a \).

Red: head scans
Blue: body scans

\[x = \text{distance from isocenter to int point} \]
\[y = \text{isodose curve value} \]
Isodose Maps

P = 0.02, T = 1
Future Work

• Multiple material transmission
 – Steel deck + concrete

• Updated workloads for special procedures
 – IR labs with RDSR irradiation event data

• Thank you!