Introduction to Theranostics

Michael M. Graham, PhD, MD University of Iowa

Theranostics

Theranostics is a combination of the terms <u>therapeutics</u> and diag<u>nostics</u>. Theranostics is the term used to describe the combination of using one radioactive drug to identify (diagnose) and a second radioactive drug to deliver therapy to treat the main tumor and any metastatic tumors.

Theranostics

Theranostics is a combination of the terms <u>therapeutics</u> and diag<u>nostics</u>. Theranostics is the term used to describe the combination of using one radioactive drug to identify (diagnose) and a second radioactive drug to deliver therapy to treat the main tumor and any metastatic tumors.

Therapeutic Radiopharmaceutical

Theranostic Combinations

Imaging Therapy

- I-131 I-131
- Ga-68 DOTATATE Lu-177 DOTATATE
- Ga-68 DOTATOC Y-90 DOTATATE
- Ga-68 PSMA11
- F-18 PSMA

Ga-68 FAPI

- Tc-99m PSMA
- Lu-177 PSMA617
- Ac-225 PSMA
- Th-227 PSMA

• Lu-177 FAPI

Disease

- Thyroid Cancer
- Graves Disease
- Neuroendocrine tumors
- Neuroendocrine tumors
- Prostate Cancer

• Tumor associated fibroblasts

• Pb-203 MCH • Pb-212 MCH

FDA -approved In Clinical Trial

• Melanoma

The	ranostic Co	mbinations
Imaging	Therapy	Disease
• 1-131	• 1-131	Thyroid Cancer
		Graves Disease
• Ga-68 DOTATATE	Lu-177 DOTATATE	Neuroendocrine tumors
• Ga-68 DOTATOC	• Y-90 DOTATATE	Neuroendocrine tumors
• Ga-68 PSMA11	• Lu-177 PSMA617	Prostate Cancer
• F-18 PSMA	• Ac-225 PSMA	
• Tc-99m PSMA	Th-227 PSMA	
• Ga-68 FAPI	• Lu-177 FAPI	 Tumor associated fibroblasts
• Pb-203 MCH	• Pb-212 MCH	Melanoma
FDA -approved	In Clinical Trial	

FDA -approved

Table 1. Current diagnostic PSMA ligand			
Isotope	Target	Imaging agent	
⁸⁹ Zr			
	Monoclonal antibody	⁸⁹ Zr-DFO-7E11	
	Monoclonal antibody	⁸⁹ Zr-DFO-J591	
	Antibody fragment	⁸⁹ Zr-Cys-Db	
⁶⁴ Cu			
	Monoclonal antibody	⁶⁴ Cu-DOTA-3/A12	
	Monoclonal antibody	⁶⁴ Cu-DOTA-3/F11	
	Monoclonal antibody	⁶⁴ Cu-DOTA-3/E7	
¹¹¹ In			
	Antibody fragment	¹¹¹ In-JVZ007-cys	
^{99m} Tc			
	Antibody fragment	^{99m} Tc-J591Cdia	
	Small molecule inhibitor	^{99m} Tc-MIP-1404	
	Small molecule inhibitor	^{99m} Tc-MIP-1405	
	Small molecule inhibitor	^{99m} Tc-DUPA	
⁶⁸ Ga			
	Antibody fragment	⁶⁸ Ga-THP-scFv	
	Small molecule inhibitor	⁶⁸ Ga-rhPSMA	
	Small molecule inhibitor	⁶⁸ Ga-THP-PSMA	
	Small molecule inhibitor	⁶⁸ Ga-PSMA-11	
	Small molecule inhibitor	68 Ga-PSMA-I&T	
¹⁸ F			
	Small molecule inhibitor	¹⁸ F-SFB	
	Small molecule inhibitor	¹⁸ F-CTT-1298	
	Small molecule inhibitor	¹⁸ F-CTT-1057	
	Small molecule inhibitor	¹⁸ F-DCFBC	
	Small molecule inhibitor	¹⁸ F-DCFPyL	
	Small molecule inhibitor	¹⁸ F-YC-88	
	Small molecule inhibitor	¹⁸ F-PSMA-1007	
	Small molecule inhibitor	¹⁸ F-rhPSMA-7.3	
	Small molecule inhibitor	¹⁸ F-FSU-880	

Tateishi U. Prostate-specific membrane antigen (PSMA)–ligand positron emission tomography a radioligand therapy (RLT) of prostate cancer Jpn J Clin Oncol. 2020;50(4):349-356.

2

Table 3. Clinical use of PSMA ligands (Oct 2019)

18F-PSMA ligands		Organization or company	Clinical phase
1	¹⁸ F-DCFPyL	Progenics Pharmaceuticals	Phase 3
2	¹⁸ F-PSMA-1007	ABX	Clinical study
3	¹⁸ F-CTT1057	Novartis (AAA)	Phase 1
4	¹⁸ F-rhPSMA-7.3	Blue Earth Diagnostics	Phase 1
5	¹⁸ F-FSU-880	Kyoto University	Phase 2
68 Ga-PSMA ligands		Organization or company	Clinical phase
1	⁶⁸ Ga-PSMA-11	Telix Pharmaceuticals	Phase 3
2	⁶⁸ Ga-PSMA-617	Novartis (Endocyte)	Clinical study
3	⁶⁸ Ga-PSMA-I&T	Technical University of	Clinical study
		Munich	
PSMA ligands for RLT		Organization or company	Clinical phase
1	¹⁷⁷ Lu-PSMA-617	Novartis (Endocyte)	Phase 3
2	²²⁵ Ac-PSMA-617	Novartis (Endocyte)	Phase 1
3	¹⁷⁷ Lu-TX591	Telix Pharmaceuticals	Phase 2
4	¹⁷⁷ Lu-PSMA-R2	Novartis (AAA)	Phase 1/2
5	²²⁷ Th-PSMA-TTC	Bayer	Phase 1

Tateishi U. Prostate-specific membrane antigen (PSMA)–ligand positron emission tomography radioligand therapy (RLT) of prostate cancer Jpn J Clin Oncol. 2020;50(4):349-356.

))

Gallium-68 $T_{1/2} = 68 min$

Fig. 1. Simplified decay scheme for 68 Ge- 68 Ga. Data were taken from the DDEP data evaluation [4]. The branching probabilities b_1 , b_2 , and b_3 refer to the two positron emission and gamma emission probabilities, respectively.

Used with DOTATATE, PSMA, FAPI

Zimmerman BE, Cessna JT, Fitzgerald R. Standardization of ⁶⁸Ge/⁶⁸Ga Using Three Liquic () Scintillation Counting Based Methods. J. Res. Natl. Inst. Stand. Technol. 113, 265-280 (2008)

Lutetium-177 $T_{1/2} = 6.7 d$ **Production: Neutron activation** E _{β(max)} = 497 keV (78.6 %), 384 keV (9.1 %), 176 keV (12.2 %) E_v = 113 keV (6.6 %), 208 keV (11 %)] The mean penetration range of β^- particles emitted by ¹⁷⁷Lu in soft tissue is 670 μm

Used with DOTATATE, PSMA, FAPI

Yttrium-90 $T_{1/2} = 64.6 h$ Production: decay from Sr-90

E _{β(max)} = 2.28 MeV (99.98 %)

 $E_v = 1.76 \text{ MeV} (0.017 \%)$

The mean penetration range of β⁻ particles emitted by ⁹⁰Y in soft tissue is 2.5 mm <u>Positron emission = 32 ppm</u>

Used with DOTATOC

Imaging following intra-arterial administration of ⁹⁰Y resin microspheres

(a)

(a)

Bremsstrahlung SPECT/CT

PET-CT

Br J Radiol. 2012 Jul; 85(1015): 1018–1019.

DOTATOC and DOTATATE

Approved 2019

Approved 2016

The untapped potential of Gallium 68-PET: The next wave of ⁶⁸Ga-agents D.L. Smith et al. / Applied Radiation and Isotopes 76 (2013) 14–23

Hofmann M, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand ⁶⁸Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001 v28:1751-7.

67 year old with episodic flushing, loose stools, documented liver mets, elevated chromogranin A. Primary NET site not established.

In-111 Octreotide

Ga-68 DOTATOC

Ga-68 DOTATOC

Lu-177 DOTATATE (Approved 2018)

Ga-68 DOTATATE

FIGURE 4. Whole-body images acquired after administration of ¹⁷⁷Lu-DOTATATE in different therapy cycles. (200 mCi (7.4 GBq) per dose)

Hope TA, et al. NANETS/SNMMI Procedure Standard for Somatostatin Receptor–Baser () Peptide Receptor Radionuclide Therapy with ¹⁷⁷Lu-DOTATATE. J Nucl Med 2019; 60:937–943

NETTER 1 Prospective Randomized Clinical Trial (Peptide Receptor Radiotherapy (PRRT) vs Conventional Therapy)

116 patients treated with Lu-177 DOTATATE plus low dose long-acting octreotide 113 patient treated with high dose long-acting octreotide

41 centers in 8 countries were involved

Strosberg J. et al. Phase 3 Trial of ¹⁷⁷Lu-Dotatate for Midgut Neuroendocrine Tumors N Engl J Med 2017;376:125-35.

177Lu-DOTATATE

P = 0.004

Control

25

0

30

0

20

5

Neuroendocrine tumors

MedscapeCME

Prostate Cancer

Hoffman RM. Screening for Prostate Cancer. N Engl J Med 2011; 365:2013-2015

Radiotracers for Prostate Cancer

Most widely studied Prostate-Specific Membrane Antigen (PSMA) Radiopharmaceuticals

Ga-68 PSMA-11

Lu-177 PSMA-617

F-18 PSMA Targeted Radiopharmaceuticals

Tateishi U. Prostate-specific membrane antigen (PSMA)–ligand positron emission tomography radioligand therapy (RLT) of prostate cancer Jpn J Clin Oncol. 2020;50(4):349-356.

¹⁷⁷Lu-PSMA 617

⁶⁸Ga-PSMA

¹⁷⁷Lu-PSMA cycles

⁶⁸Ga-PSMA

Baum RP, et al. ¹⁷⁷Lu-PSMA Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. J Nucl Med. 2016 Jul;57(7):1006-13. 177 Lu T½ = 6.7 d $\gamma = 113 \& 210$ (s) $\beta_{mean} = 149 \text{ kV}$

¹⁷⁷Lu-PSMA 617 (Germany)

Baum RP, et al. Lutetium-177 PSMA Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. J Nucl Med. 2016 Jul;57(7):1006-13.

¹⁷⁷Lu-PSMA 617 (Australia)

FIGURE 2. Waterfall plot of best PSA decline compared with baseline.

Violet J et al. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50-Patient Single-Center Phase II Prospective Trial of ¹⁷⁷Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2020; 61:857–865

)

Melbourne, Australia Group

Overall Survival

Progression-free Survival

Violet J et al. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50 Patient Single-Center Phase II Prospective Trial of ¹⁷⁷Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2020; 61:857–865

¹⁷⁷Lu-PSMA

²²⁵Ac-PSMA

Beta-Emitter Therapy

Alpha-Emitter Therapy

Poster at SNMMI 2016 annual meeting

Ac-225-PSMA617 - a single center experience of 40 patients receiving PSMA-targeted Alpha therapy

C. Kratochwil¹, F. L. Giesel¹, F. Bruchertseifer², M. Rius², C. Apostolidis², U. Haberkorn¹, A. Morgenstern²

(1) Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany

(2) Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe, Germany

Ac-225-PSMA617 - a single center experience of 40 patients receiving PSMA-targeted Alpha therapy

C. Kratochwil¹, F. L. Giesel¹, F. Bruchertseifer², M. Rius², C. Apostolidis², U. Haberkorn¹, A. Morgenstern²

(1) Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany

(2) Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe, Germany

Ac-225 PSMA

FIGURE 2. TTP vs. duration of clinical benefit. After favorable initial PSA and imaging response to complete remission, patient 14 had TTP of only 1 y (January to December 2015). However, duration of clinical benefit was more than 1 y longer: because of asymptomatic disease and slow growth velocity, treatment-free interval could be prolonged until April 2017. Whether patient will again respond to second series of ²²⁵Ac-PSMA-617 is not yet known. (Images courtesy of Prof. Felix Mottaghy, Rheinisch-Westfälische Technische Hochschule Aachen.)

Kratochwil C, et al. Targeted a-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J Nucl Med 2018; 59:795–802

Ac-225 PSMA

FIGURE 5. Waterfall graphs of PSA response. Patients who died before week 8 (red) or discontinued because of xerostomia (yellow) were classified as progression.

Kratochwil C, et al. Targeted a-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J Nucl Med 2018; 59:795–802

The Need for Dosimetry

"The high dose to kidney, bone marrow, and other nontarget tissues, as well as the large variability in biodistribution and tumor uptake among patients, should be addressed. Thus, precise and reliable dosimetry of normal organs and tumor with these agents is needed, and its achievement is challenging."

Dosimetry requires determination of (MBq - Hrs)/gm in tissue (quantitative imaging) and appropriate software

Cremonesi M et al. Dosimetry in Peptide Radionuclide Receptor Therapy: A Revie J Nucl Med 2006 v47 no. 9 1467-1475

Other uncertainties in dosimetry arise from the unknown micro-distribution and the possible mobility of the daughter nuclides.

Lead – 212 and Lead - 203

Radium - 223

Alpha Emitters Gamma Spectra

Flux GD. Imaging and dosimetry for radium-223: the potential for personalized treatment. Br J Radiol 2017; 90: 20160748.

)

Usmani S, et al. ²²⁵Ac Prostate-Specific Membrane Antigen Posttherapy α Imaging Comparing 2 and 3 Photo-peaks. Clin Nucl Med. 2019 May;44(5):401-403.

Current status

- Ga-68 and Lu-177 DOTATATE are currently approved in clinical use for treating neuroendocrine tumors
- Current approach is 200 mCi x 4 at monthly intervals
- Some patients get too much, many could get more

Near future

• Several PSMA agents are in clinical trial and will be approved in the next few years, including alpha-emitting agents

The challenge and opportunity

- Develop convenient, user-friendly methodology to provide
 - A-priori dosimetry to determine the appropriate 1st administered dose
 - Based of 1st dose dosimetry, determine appropriate next doses
 - Dosimetry for alpha-emitting radiopharmaceuticals

Theranostics

END

