The ACR Fluoroscopy Dose Index Registry Pilot

A. Kyle Jones, Ph.D., FAAPM The University of Texas MD Anderson Cancer Center
Kevin Wunderle, Ph.D. Cleveland Clinic
Shalmali Dhamradhikari, Ph.D. Emory University
Xinhui Duan, Ph.D. The University of Texas Southwestern Medical Center
Don-Soo Kim, Ph.D. Boston Children’s Hospital
Usman Mahmood, Ph.D. Memorial Sloan Kettering Cancer Center
Steve Mann, Ph.D. Duke University
Jeffrey Moirano, M.S. University of Washington
Rebecca Neill, M.S. Emory University
Alan Schoenfeld, M.S. Montefiore Medical Center
Disclosure

• A. Kyle Jones is President of FluoroSafety, a company that produces CME on quality and safety in medical imaging

• FluoroSafety will not be discussed in this talk
In the beginning

• On the way to Grouse Mountain in Vancouver during WAIS 2015

• Jeremy Durack asked a few basic questions about dose indices for the IR Registry

• One thing led to another...
The ACR NRDR

MIPS QCDR
Qualified Clinical Data Registry »

Lung Cancer Screening Registry »

Dose Index Registry »

Interventional Radiology Registry »

National Mammography Database »

General Radiology Improvement Database »

CT Colonography Registry »

CDS R-SCAN Registry »
Normative datasets

• Comparison of facility data to a normative dataset allows a practice to understand their performance relative to their peers

• The most well-known normative dataset is probably the ACR CT DIR
 • Currently more than 80M exams in the CT DIR
The need for a registry

• The RAD-IR study is the largest normative dataset for FGI

• Data for RAD-IR was collected in the mid- to late 1990s
 • 2,142 procedures
 • Single fluoroscope make and model (Siemens Multistar/Neurostar, pulsed/continuous fluoro, fixed 0.2 mm Cu filter for fluoro and small ACQ beam paths, XRII)
 • Herculean manual effort

• Substantial changes since the data collection period of RAD-IR
 • Scope and number of FGI
 • Mandatory reporting of $K_{a,r}$
 • RDSR
 • Technological advances, including variable added filtration, FPD, etc.
Radiation dose structured report (RDSR)

- Granular, detailed information
 - Every exposure event
 - Can soon contain calibration information for dose measuring device (NEMA XR-27)

- Often sent to Radiation Dose Index Monitoring (RDIM) system
 - PACS do not display in useful way

- Sites participating in DIR send RDSR to ACR via Triad
 - Only data format accepted
NEMA XR-27

• X-ray Equipment for Interventional Procedures User Quality Control Mode
 • Manual selection of X-ray parameters
 • Access to and export of FOR PROCESSING and FOR PRESENTATION images
 • **Single point calibration factor for dose indices**
 • Stored and transmitted in the RDSR, but not applied to machine-reported dose indices
 • Electronic documentation of system configuration
 • Access to RDSR in all scenarios

• Report of AAPM TG 190 provides the method for measuring the calibration factor

• Not universally available at the current time
Mechanics

• Participate in the ACR NRDR
 • Participation agreement and registry application signed
 • Triad server installed and configured

• Configure your IR fluoroscopes to send data to the Triad server
 • Directly or via RDIM
 • RDSR only

• Map your procedures to ACR Common™
<table>
<thead>
<tr>
<th>Record</th>
<th>StudyDescription</th>
<th>Requested Procedure Description</th>
<th>AcrCommand</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>6822</td>
<td>+++Native+++</td>
<td>IR GASTROSTOMY CATHETER EXCHANGE/RE-INSERTION</td>
<td>4011300 Inv-Fluoro, Gastrostomy Catheter Exchange, Abdomen, Stomach</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58564</td>
<td>+++Native+++</td>
<td>IR PICC WITHOUT PORT/PUMP</td>
<td>4011653 Inv-Fluoro, Central Venous Catheter Placement, Peripherally Inserted, Unspecified</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6849</td>
<td>+++Pelvis+++</td>
<td>IR EMBOLIZATION PELVIC</td>
<td>4011272 Inv-Fluoro, Pelvic Artery</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58685</td>
<td>Abdomen</td>
<td>IR JEJUNOSTOMY PLACEMENT DE NOVO</td>
<td>4011326 Inv-Fluoro, Jejunostomy Tube Placement, Abdomen-Pelvis, Jejunum</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58683</td>
<td>BILIARY</td>
<td>IR PLACEMENT BILIARY DRAINAGE CATHETER (INTERNAL-EXTERNAL)</td>
<td>4011338 Inv-Fluoro, Percutaneous Biliary Drainage Placement, Abdomen, Liver</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58685</td>
<td>Biliary cath exchange 47536</td>
<td>Null</td>
<td>4011285 Inv-Fluoro, Biliary Catheter Exchange, Abdomen, Liver</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58678</td>
<td>CENTRAL LINE PLACEMENT</td>
<td>Null</td>
<td>4011269 Inv-Fluoro, Central Venous Catheter Placement, Tunneled, Chest</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58670</td>
<td>CENTRAL VENOUS PLACEMENT</td>
<td>Null</td>
<td>4011269 Inv-Fluoro, Central Venous Catheter Placement, Tunneled, Chest</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58671</td>
<td>CHEST TUBE INSERTION</td>
<td>Null</td>
<td>4011699 Inv-Fluoro, Chest Tube Placement, Chest, Lungs</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58672</td>
<td>CHOLANGIOGRAM</td>
<td>Null</td>
<td>4011342 Inv-Fluoro, Percutaneous Cholangiography, Abdomen, Liver</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>5873</td>
<td>CHOLE</td>
<td>Null</td>
<td>4011292 Inv-Fluoro, Percutaneous Choledochotomy Drain Placement, Abdomen, Gallbladder</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>43107</td>
<td>CT ABD BX NEEDLE</td>
<td>IR SIR SPHERES-_DIAGNOSTIC WITHOUT EMBO</td>
<td>4011596 Inv-Fluoro, Radioembolization Cir-Spheres, Abdomen-Pelvis, Visceral Arteries</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6909</td>
<td>CT ABD BX NEEDLE</td>
<td>IR RADIOEMBOLIZATION SIR SPHERES - TREATMENT</td>
<td>4011596 Inv-Fluoro, Radioembolization Cir-Spheres, Abdomen-Pelvis, Visceral Arteries</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6910</td>
<td>CT ABD BX NEEDLE</td>
<td>IR RADIOEMBOLIZATION THERASPHERES - DIAGNOSTIC</td>
<td>4011493 Inv-Fluoro, Radioembolization Theraspheres, Abdomen-Pelvis, Visceral Arteries</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>43202</td>
<td>CT ABD BX NEEDLE</td>
<td>IR SIR SPHERES-TREATMENT</td>
<td>4011596 Inv-Fluoro, Radioembolization Cir-Spheres, Abdomen-Pelvis, Visceral Arteries</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6890</td>
<td>CT ABD BX NEEDLE</td>
<td>IR EMBOLIZATION RENAL ARTERY</td>
<td>4011275 Inv-Fluoro, Artery Embolization, Abdomen-Pelvis, Viscera</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>58689</td>
<td>CT ABD BX NEEDLE</td>
<td>IR EMBOLIZATION SPINE</td>
<td>4011543 Inv-Fluoro, Spinal Artery Embolization, Spine</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6889</td>
<td>CT ABD BX NEEDLE</td>
<td>IR EMBOLIZATION HEPATIC ARTERY</td>
<td>4011275 Inv-Fluoro, Artery Embolization, Abdomen-Pelvis, Viscera</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6982</td>
<td>CT ABD BX NEEDLE</td>
<td>IR EMBOLIZATION VISCERAL</td>
<td>4011275 Inv-Fluoro, Artery Embolization, Abdomen-Pelvis, Viscera</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6891</td>
<td>CT ABD BX NEEDLE</td>
<td>IR EMBOLIZATION SPLENIC ARTERY</td>
<td>4011387 Inv-Fluoro, Artery Embolization, Abdomen, Spleen</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6901</td>
<td>CT ABD BX NEEDLE</td>
<td>IR NEPHROSTOMY PLACEMENT</td>
<td>4011334 Inv-Fluoro, Nephrostomy Placement, Abdomen-Pelvis, Kidney</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>96239</td>
<td>CT GUIDE ABLAT</td>
<td>IR THERASPHERES-DIAGNOSTIC WITHOUT EMBO</td>
<td>4011493 Inv-Fluoro, Radioembolization Theraspheres, Abdomen-Pelvis, Visceral Arteries</td>
<td>Tagging Completed</td>
</tr>
<tr>
<td>6931</td>
<td>CT GUIDE ABLAT</td>
<td>IR EMBOLIZATION VISCERAL</td>
<td>4011275 Inv-Fluoro, Artery Embolization, Abdomen-Pelvis, Viscera</td>
<td>Tagging Completed</td>
</tr>
</tbody>
</table>
ACR Common

- Ontology for radiology procedures
 - Leverages existing ontologies and coding schemes
 - Organized around fundamental and derived axes such as scenario, procedure, and finding
 - Includes indications and more details about the procedure

- Updated based on experience during the pilot phase
 - Tried our best to maintain synchronization with the SIR IR Registry
<table>
<thead>
<tr>
<th>Site procedure</th>
<th>ACR Common name(s)</th>
<th>Requested change</th>
<th>Changes made to ACR Common name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR ABDOMINAL AORTOGRAPHY</td>
<td>4011572 Inv-Fluoro, Angiography Aorta, Chest-Abdomen-PEHs, Aorta</td>
<td>Update code as described in Col C: Update code: 4011572 Inv-FLUOR, aortography, chest-abdomen-pehls, aorta</td>
<td>4011572 INV-FUOR, aortography, chest-abdomen-pehls, aorta</td>
</tr>
<tr>
<td>IR CHOLECYSTOSTOMY TUBE EXCHANGE</td>
<td>does not exist</td>
<td>Create new code: XXXXXXX Inv-Fluoro, Cholecystostomy Exchange, Abdomen, GallBladder</td>
<td>4012738 Inv-Fluoro, Cholecystostomy Exchange, Abdomen, Gallbladder</td>
</tr>
<tr>
<td>BRONCHIAL ARTERY EMBOLIZATION</td>
<td>does not exist</td>
<td>Create new code: XXXXXXX Inv-Fluoro, Bronchial artery embolization, Chest, Lungs</td>
<td>4012739 Inv-Fluoro, Bronchial artery embolization, Chest, Lungs Bronchial arteries</td>
</tr>
<tr>
<td>Renal artery embolization</td>
<td>4011275 Inv-Fluoro, Artery Embolization, Abdomen-PEHs, Viscera</td>
<td>Create new code: XXXXXXX Inv-Fluoro, Renal Artery Embolization, Abdomen-PEHs, Kidney</td>
<td>4012740 Inv-Fluoro, Renal Artery Embolization, Abdomen-PEHs, Kidney, Renal artery</td>
</tr>
<tr>
<td>IR INTRAPERITONEAL PLACEMENT (NON-TUNNELED) does not exist</td>
<td>Create new code: XXXXXXX Inv-Fluoro, Peritoneal Catheter Placement, Non-Tunneled, Abdomen, Peritoneum</td>
<td>4012741 Inv-Fluoro, Peritoneal Catheter Placement, Non-Tunneled, Abdomen, Peritoneum</td>
<td></td>
</tr>
<tr>
<td>Biliary Interventions</td>
<td>These seem to be duplicate codes: 4011286 Inv-Fluoro, Biliary Catheter Placement, Abdomen, Liver 4011338 Inv-Fluoro, Percutaneous Biliary Drainage Placement, Abdomen, Liver</td>
<td>Merge all procedures from 4011286 into 4011338 then Delete code:</td>
<td>4011286 Removed from ACR Common 4011338 Removed from ACR Common</td>
</tr>
<tr>
<td>Vena cava gram</td>
<td>These seem to be duplicate codes: 4011486 Inv-Fluoro, Venacavagram, Chest, Superior Vena Cava 4011903 Inv-Fluoro, Venagram, Chest, Superior Vena Cava</td>
<td>Merge all procedures from 4011486 into 4011601 then Delete code:</td>
<td>4011486 Removed from ACR Common 4011903 Removed from ACR Common</td>
</tr>
</tbody>
</table>
Challenges with procedure mapping

• Mapping is not 1:1 (in both directions)

• Combined procedures

• Study Description vs. Requested Procedure Description

• Change in procedure after case is started

• Varying granularity in facility clinical procedure names
The pilot phase

• The pilot of the ACR-SIR Fluoroscopy Dose Index Registry has 9 sites, including several sites performing substantial numbers of pediatric interventions

• Data collection period ran from March 1, 2018 through December 31, 2019

• RDSR collected for over 100,000 procedures
First results: technical data

• 28 single plane and 10 biplane angiographic fluoroscopes
 • 16 Siemens
 • 14 Philips
 • 6 GE
 • 2 Toshiba/Canon

• Average year of manufacture: 2012 (2002 – 2019)
First results: technical data

• Correction Factors (actual/machine-reported) were stable over an 18 month period
 • Measured using TG 190 methods

• Mean difference between CF for FLU and ACQ was 0.03

<table>
<thead>
<tr>
<th>Dose index (mode)</th>
<th>Mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{a,r}$ (FLU)</td>
<td>0.94 (0.92 – 0.96)</td>
</tr>
<tr>
<td>P_{KA} (FLU)</td>
<td>0.95 (0.93 – 0.96)</td>
</tr>
<tr>
<td>$K_{a,r}$ (ACQ)</td>
<td>0.96 (0.93 – 0.98)</td>
</tr>
<tr>
<td>P_{KA} (ACQ)</td>
<td>0.98 (0.95 – 1.00)</td>
</tr>
</tbody>
</table>
Participation guide white paper

• Directions to key NRDR resources on the ACR website

• Guidance for assembling your DIR team

• Pitfalls and pearls from the pilot
The next piece of the puzzle

- We knew going in that collecting data as part of a registry was going to be challenging
 - Varying states of facility clinical procedure names
 - Procedure can evolve during the case
 - Likely unable to collect data on operator, a major variable that affects procedural dose indices

- However, there are some exciting developments coming with ACR Connect
Acknowledgments

• ACR Registries team, Department of Quality and Safety, IT
 • Chao Yen
 • Kay Zacharias-Andrews
 • Judy Burleson
 • Dustin Gress
 • Mike Simanowith
 • Tom Fruscello

• Kevin Wunderle

• Don Miller and Steve Balter

• Pilot sites
ACR-SIR Fluoroscopy Dose Index Registry Pilot Sites

- University of Texas MD Anderson Cancer Center (A. Kyle Jones)
- Cleveland Clinic (Kevin Wunderle)
- Memorial Sloan Kettering Cancer Center (Usman Mahmood)
- Montefiore Medical Center (Alan Schoenfeld)
- Boston Children’s Hospital (Don-Soo Kim)
- University of Washington (Jeff Moirano)
- Emory University (Shalmali Dharmadhikari)
- University of Texas Southwestern Medical Center (Xinhui Duan)
- Duke University (Steve Mann)