Advanced MRI in the Clinic: MR Spectroscopy

2020 Joint AAPM | COMP Virtual Meeting, July 14, 2020

Samuel A. Einstein, Ph.D.
Physicist
SamuelAEinstein@gmail.com

Declaration of Financial Interests or Relationships

- I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.
Disclaimers

1. While I strived to make the information in this presentation as accurate as possible, I make no claims, promises, or guarantees about the accuracy, completeness, or adequacy of the contents.

2. References to any commercial product are only for information and do not constitute an endorsement or recommendation.

Objectives

• Understand the physical basis of MR spectroscopy (MRS)
• Recognize the prerequisites to obtaining high quality MRS data in vivo
• Become familiar with clinically-available MRS pulse sequences and their optimization
• Understand common MRS analysis approaches in the clinic
• Recognize common MRS artifacts
• Become familiar with the clinical applications of MRS
• Become familiar with the current best practices for MRS QA
Information Encoding

Larmor equation

\[\omega = \gamma B \]

Extrinsic factors
- \(B_0 \)
- Magnetic field gradients
- Magnetic field inhomogeneity

Intrinsic factors
- Electron shielding
- J-coupling

Magnetic information encoded in frequency, \(^{13}\text{C} \), etc.

Information Encoding

Larmor equation

\[\omega = \gamma B \]

Electron shielding

\[\delta = B_0 - B, \]
\[B = B_0 (1 - \sigma) \]
\[\omega = \gamma B_0 (1 - \sigma) \]

Scalar spin-spin interaction (J-coupling)

Interaction between spins mediated through chemical bonds

Slide courtesy of Ivan Tkáč.
Chemical Shift

\[\omega_i = \gamma B_0 (1 - \sigma_i) \]

\[\nu_i = \gamma B_0 (1 - \sigma_i)/2\pi \]

\[\delta_i = (\nu_i - \nu_{\text{ref}})/\nu_0 \]

Chemical shift reference
Tetramethylsilane (TMS)

- independent of \(B_0 \)
- units: ppm

increased proton shielding

Courtesy of Ivan Tkáč.

J-coupling evolution

180° RF pulse does NOT re-phase evolution due to J-coupling.

J-coupling evolution

Choice of TE affects spectral peak appearance of coupled nuclei.

![Diagram of J-coupling evolution](De_Graaf,_Robin_A._In_vivo_NMR_spectroscopy:_principles_and_techniques._John_Wiley&_Sons,_2007.)

4 Requirements for Successful MRS

1. Incredibly homogeneous magnetic field
2. Effective water/fat suppression
3. High-quality localization
4. Robust analysis
Magnetic Field Homogeneity

- MRI requires a homogenous magnetic field. MRS requires an incredibly homogenous field.
- FWHM $\propto 1/T_2^*$ so better homogeneity \rightarrow narrower peaks (i.e. better spectral resolution).
- Narrow peaks are also required for good water suppression.
- Good shimming is critical
 - Figure out which technique works best on your scanner.
 - Repeat the shim and/or re-position the patient if necessary.
 - Use a system with at least 2\(^{nd}\)-order shims.

![Magnetic Field Homogeneity](image)
Water suppression

- Water signal (55M) must be suppressed to accurately visualize metabolite signals (0.5-10mM), even with high-quality digital ADCs.
- Our goal is to suppress the water signal by >98%.
- Relaxation-based methods (e.g. IR prep) are problematic so most clinical techniques use chemically-selective saturation (i.e. FatSat tuned to water).
- CHESS is the most common in the clinic.
- As a general rule, the longer and stronger (i.e. more time and/or SAR), the better the water suppression.

Courtesy of Allen D. Elster, MRIquestions.com

Water suppression

- Fat suppression
 - Fat signal is also often greater than metabolite signals.
 - Fat outside the region of interest can be suppressed with outer volume suppression (OVS).
 - Fat within the tissue of interest can be suppressed with usual methods (IR, FatSat).
Localization

- For a spectrum to aid clinical diagnosis, the location from which it was obtained must be known accurately.
- Surface coil localization was originally used for superficial lesions and cardiac studies, but is no longer common.
- Single voxel spectroscopy (SVS) and multi-voxel spectroscopy (MVS, a.k.a. spectroscopic imaging [SI]) are currently used in the clinic.

Single voxel spectroscopy (SVS)

- Most common technique.
- Simple to acquire and interpret.
- Excellent SNR efficiency.
- Single, localized voxel allows for excellent shimming and, therefore, high-quality spectra.
- Many sequences clinically available.

Courtesy of R. Jason Stafford
Image Selected In Vivo Spectroscopy (ISIS)

![Diagram of ISIS pulse sequence](image)

PROS
- TE can be made VERY short allowing the detection of metabolites with very short T_2 values.

CONS
- Many

ISIS

PROS
- TE can be made VERY short allowing the detection of metabolites with very short T_2 values.

CONS
- Many

Stimulated Echo Acquisition Mode (STEAM)

STEAM

Courtesy of Allen D. Elster, MR_questions.com
STEAM

PROS
- TE can be made quite short allowing the detection of metabolites with short T_2.
- 90° pulses
 - Sharper slice profiles lead to sharper voxel edges
 - Higher bandwidth minimizes chemical shift displacement (discussed later)
 - Lower SAR

CONS
- Multiple coherence pathways
 - Result in the need for crushers, which reduce the SNR by an approximate factor of two compared to spin-echoes.
 - Induce polarization transfer effects that can affect J-coupling.

STEAM

Point Resolved Spectroscopy (PRESS)

Courtesy of Allen D. Elster, MRTquestions.com
PRESS

PROS
• Easy to implement and very reliable.
• ~2x the SNR compared to STEAM.

CONS
• Difficult to achieve short TEs (minimum is ~30 ms).
• Refocusing pulses have narrow bandwidths that result in:
 • Less-sharp edges
 • Displacement error
 • Altered amplitudes and phases of J-coupled resonances

Localization by Adiabatic Selective Refocusing (LASER)

PROS
- Insensitive to B_1 inhomogeneities.
- Minimal chemical shift displacement.
- Excellent SNR and well-defined voxels.

CONS
- Difficult to achieve short TEs.
- Very high SAR.
semi-LASER

Mitigates most of the problems with LASER, while keeping most of the benefits of using adiabatic pulses.
Sequence Recommendation

For routine clinical use:

1. Try semi-LASER if you have it.
2. If not available, try PRESS (3 T and lower) or STEAM (7 T).

Multi-Voxel Spectroscopy (MVS)

- A larger total coverage area takes the guesswork out of SVS voxel placement and permits “mapping” of metabolite distribution.
- Smaller individual voxels are possible, which leads to higher spatial resolution, but lower SNR and potential spectral contamination from adjacent voxels.
- Acquisition times are usually long, though acceleration techniques are clinically available.
- Difficulties obtaining a good shim/water suppression over the entire region often results in reduced quality.
- MVS sequences are usually just SVS sequences with phase encoding.
Multi-Voxel Spectroscopy (MVS)

- Goal is to quantify different metabolites and several software packages are available.
- Spectra are processed (baseline correction, phase correction, apodization, Fourier transform, etc.) and then quantified.
- Some software programs are significantly more advanced than others.

![Diagram of MVS sequence]

Courtesy of Allen D. Elster, MRIquestions.com
MRS Analysis Software

<table>
<thead>
<tr>
<th>Vendor Basic</th>
<th>Vendor Agnostic</th>
<th>Vendor Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comes with the vendor MRS package.</td>
<td>e.g. LCModel, Tarquin</td>
<td>e.g. Syngo, IntelliSpace, READYView</td>
</tr>
<tr>
<td>Often automatic.</td>
<td>Very advanced software with sophisticated fitting algorithms.</td>
<td>Best of both worlds.</td>
</tr>
<tr>
<td>Very simple peak height or integral quantification.</td>
<td>Fully customizable (basis sets, metabolites, processing, etc.).</td>
<td>Rapidly approaching vendor agnostic software in terms advanced features.</td>
</tr>
<tr>
<td>Only a few metabolites can be quantified.</td>
<td>Provide estimates of quantification errors and metrics of spectral quality.</td>
<td>Allows for sophisticated processing, custom metabolites, error estimation, etc.</td>
</tr>
</tbody>
</table>

Not FDA approved.

A note of caution

![Metabolite Spectra](image)

Are you calculating signal intensity or metabolite concentration?

Another note of caution

Ionic GBCAs can decrease the choline signal by 0-50%.

MRS Artifacts

- Artifacts in MRS appear very different from artifacts in MRI and are often less conspicuous.
Holes/Spikes in MVS

- Caused by failure of the analysis software's automatic peak assignment.
- More common in lower-quality spectra.
- Sometimes re-processing can correct this.

Peak mis-assignment

- Caused by failure of the analysis software's automatic peak assignment.
- More common in lower-quality spectra.
- Sometimes re-processing can correct this.
Motion artifact

Unusual Peaks
Susceptibility Artifact

- Poor shimming results in wide, short (low SNR), and poorly-separated peaks.
- Strong susceptibility artifacts may arise from air-tissue interfaces, blood products, etc.
- The presence of strong susceptibility gradients may prevent a good shim and, therefore, the acquisition of high-quality spectra.

Poor Water Suppression

- Poor water suppression is usually evidenced by non-linear baselines and low peak SNR, especially above 3.5 ppm.
- Often due to poor shim and more common in MVS (where getting a good shim over the entire volume is challenging).
Signal Bleed

- Typically evidenced by the phase difference and broadness of the peak.
- This particular voxel was located very near the skull and sequence/pulse imperfections (and, possibly, patient motion) acquired some signal from the scalp.
- OVS is important.

Crusher Failure/Spurious Echoes

- This ringing was due to failure of the crusher gradients, which resulted in unwanted additional echoes in the FID.
- During processing, these echoes become high-frequency ringing artifacts.
- These artifacts are more common in oblique voxels, but can be suppressed by signal processing (e.g. apodization).
Clinical Applications of MRS

- MR spectroscopy (MRS) is rapidly expanding in the clinic where it is primarily used to quantify metabolites in vivo.
- This metabolic information may enable better diagnoses, personalized treatments, and rapid assessment of treatment response.
- Primary application is oncology and the most consistent indication of malignancy is elevation of choline.

CNS

- MRS is indicated for a variety of neurological conditions
- The most common uses include:
 - Primary diagnosis of brain lesions.
 - Distinguishing recurrent brain tumor from radiation necrosis.
 - Diagnosis of inborn errors of metabolism affecting the CNS.

<table>
<thead>
<tr>
<th>INDICATIONS</th>
</tr>
</thead>
</table>
CNS

- **Primary peaks:**
 - Total NAA (2.0 ppm)
 - N-acetylaspartate and N-acetylaspartylglutamate
 - Neuronal marker
 - Total Cr (3.0 ppm)
 - Creatine and phosphocreatine
 - Energy buffer
 - Total Ch (3.2 ppm)
 - Choline, glycerophosphorylcholine and phosphorylcholine
 - Membrane turnover

CNS

- **Other peaks:**
 - Glx (glutamine, glutamate)
 - γ-Aminobutyric acid
 - Lactate
 - Lipids
 - Myo- and scyllo-inositol
 - Citrate
 - (D)-2-hydroxyglutarate (2HG)
 - Taurine
 - Glucose
 - Ethanol
 - Mannitol
 - Acetate and succinate
 - Branched-chain amino acids

Breast

- Breast MRS has 2 primary clinical applications:
 - As a supplement to breast MRI to improve specificity in differentiating benign from malignant lesions
 - Monitoring/predicting treatment response in patients undergoing neoadjuvant chemotherapy
- Choline is usually the metabolite of interest, with elevated levels of choline indicative of active tumor.

Prostate

- Primary peaks:
 - Citrate (2.6 ppm)
 - Accumulates in non-malignant cells
 - Total Cr (3.0 ppm)
 - Energy buffer
 - Polyamines (3.1 ppm)
 - Synthesized by prostate epithelial cells
 - Total Ch (3.2 ppm)
 - Choline, glycerophosphorylcholine and phosphorylcholine
 - Membrane turnover

Non-proton MRS

- Non-proton MRS is still in clinical trials with ^{13}C and ^{31}P closest to routine clinical use.
- ^{13}C and ^{31}P are primarily used for metabolic imaging.
- There is now a clinical hyperpolarizer available for ^{13}C that boosts the signal by 10,000x.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Natural abundance (%)</th>
<th>Gyromagnetic ratio (MHz/T)</th>
<th>Relative Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>^1H</td>
<td>99.98</td>
<td>42.58</td>
<td>100.00</td>
</tr>
<tr>
<td>^{13}C</td>
<td>1.11</td>
<td>10.71</td>
<td>1.59</td>
</tr>
<tr>
<td>^{31}P</td>
<td>100.00</td>
<td>40.05</td>
<td>83.30</td>
</tr>
<tr>
<td>^{23}Na</td>
<td>100.00</td>
<td>11.26</td>
<td>9.25</td>
</tr>
<tr>
<td>^{31}P</td>
<td>100.00</td>
<td>17.23</td>
<td>6.63</td>
</tr>
<tr>
<td>^{39}K</td>
<td>93.10</td>
<td>1.99</td>
<td>0.05</td>
</tr>
</tbody>
</table>

31P-MRS

- Changes in myocardial energy metabolism have been implicated in several cardiac disease.
- ^{31}P-MRS is a great tool to study in vivo cardiac energetics.
- Specific ^{31}P-MRS applications include measuring ATP/ATP flux and CK flux.

13C-MRS

- Currently in clinical trials for prostate imaging.
- Hyperpolarized 13C-pyruvate is injected and its conversion to 13C-lactate is imaged and quantified.

Courtesy of GE Healthcare

MRS QA

- AAPM Report 100 (2010) details recommended MRS acceptance testing using a phantom.
- I personally argue that phantom-based MRS QA alone is insufficient since the phantom poorly emulates both the biochemical milieu and electromagnetic environment found in vivo.

MRS QA

- I would argue that every spectrum from every scan from every patient be verified for quality before being sent to a radiologist.
- This process can be semi-automated and also used for longitudinal monitoring of scanner performance.

- SNR > 3 for major resonances such as high tCho and low tNAA in tumors; SNR > 2 for detection only of important indicator metabolites such as lactate
- Spectral resolution: FWHM of metabolites < 0.1 ppm
- Line shape: symmetric
- Water suppression > 98%
- No lipid contamination from the scalp
- Artifacts (chemical shift artifact, ghosting, patient motion, eddy currents, volume averaging) are absent or minor

Thank you!