Imaging in Proton Therapy

CT, DECT, and Multi Energy CT for Planning and Dose Calculations

By Hugo Bouchard, PhD, MCCPM

Associate Professor – Department of Physics – Université de Montréal Principal Researcher – Imaging and Engineering Axis – CRCHUM Medical Physicist – Department of Radiation Oncology – CHUM

> Self Assessment Module (SAM) AAPM-COMP meeting – 12 July 2020

Objectives of this talk

At the end of this talk, you will be able to

- 1. Define the need for CT during proton beam treatment planning
- 2. Summarize the principles of CT and the role of X-ray energy on data
- 3. Summarize various CT technologies for resolving energy
- 4. Explain the principles of CT calibration for radiotherapy
- 5. Summarize the principles for extracting key radiotherapy quantities from CT

1. CT during proton treatment planning

RSP for 195 MeV p+

1. CT during proton treatment planning

Patient CT scan

- Proton range uncertainties can be reduced by more than 2% with Monte Carlo calculations compared to conventional methods (Paganetti, PMB 2012)
 - This is mostly due to the ability of MC to model range degradation
- Monte Carlo requires key input quantities to model interactions in human tissues
 - Macroscopic interaction cross sections
 - Stopping power

- There are at least 10 different physical processes relevant to radiotherapy (i.e., requiring the use of cross sections)
- Cross sections are energy- and Z-dependent and (mostly) unseparable functions
- Therefore dimensionality is governed by elemental composition

Interaction	Incident particle	Target	Z-dependance of $\sigma_{a}(E,Z)$
Rayleigh scattering	γ	atom	$F\left(Z ight)$
Photo-electric effect	γ	atom	$\sigma_{ m ph}\left(Z ight)\sim Z^{5}$
Compton scattering	γ	bound electrons	$S\left(Z ight)$
Pair and triplet production	γ	nucleus	$\sim Z(Z + \xi(Z)) G_1(Z)$ and $Z(Z + \xi(Z)) G_2(Z)$
Bremsstrahlung	e-, p+	nucleus	same as above
Collision stopping power	e-, p+	bound electrons	$\sim Z \text{ and } Z \ln I$
Coulomb scattering	e-, p+	nucleus	$Z^2R(Z)$
EM collision (ionisation)	e-, p+	bound electrons	$\sim Z$ (except for EII)
Nuclear	$\mathbf{p}+$	nucleus	isotope-specific
Atomic relaxation	all	atom	element-specific

1. CT during proton treatment planning

2. Principles of CT and role of X-ray energy on data

Typical CT reconstruction assumes monoenergetic scans. This causes an artefact called *beam hardening*, which results from the change in photon spectra as the X-ray travel through the object.

Example of BH artefact for a homogeneous cylindrical phantom

Mathematically, the sinogram equation accounts for these spectral changes but it is impossible to resolve it exactly without spectral information.

$$\begin{split} \Gamma\left(\xi,\gamma\right) &= \int_{0}^{h\nu_{\max}} \psi\left(h\nu\right) e^{-\mathscr{R}\left[\mu\left(x,y;h\nu\right)\right]_{\xi,\gamma}} \mathrm{d}h\nu\\ &\approx e^{-\mathscr{R}\left[\tilde{\mu}\left(x,y\right)\right]_{\xi,\gamma}} \end{split}$$

The sinogram equation and the monoener approximation to resolve an effective attenuation cofficient

2. Principles of CT and role of X-ray energy on data

 For technical reasons, it is preferred to report the data in terms of units relative to water: Hounsfield unit

$$\mathrm{HU=}1000\left[\frac{\mu}{\mu_{\mathrm{w}}}-1\right]$$

2. Principles of CT and role of X-ray energy on data

3. CT technologies for resolving energy

Mutic et al., Med Phys 2003

- For treatment planning we rely on CT's geometrical accuracy and speed of acquisition
- In conventional SECT, clinical dose calculation algorithms assign a single CT information per voxel
 - SPR lookup tables are used for semiempirical dose calculation algorithms
 - Monte Carlo inputs require additional segmentation (Schneider *et al.*, PMB 2000)

In conventional SECT, we rely on natural correlations in human tissues

3. CT technologies for resolving energy

3. CT technologies for resolving energy

Experimental measurements with MARS PCCT showed promise in gaining accuracy beyond 2 energies

*Also quite a lot of work in literature to acknowledge on MECT: Lalonde & Bouchard 2016, Lalonde *et al.* 2017, Lalonde *et al.* 2018; Simard *et al.* 2019;

4. CT calibration for use in RT

- There exists 2 types of approaches (pre/post recon.) to spectral CT and several models for CT data
- All require a calibration phantom to resolve unknowns of the model to perform estimates
 - Use of calibration materials for which elemental composition are density is known
 - Solve coefficient with maximum likelihood

Original idea of CT calibration (Schneider *et al.*, PMB 1996)

Various DECT theoretical models (Bär et al., Med Phys 2017)

TABLE I. Summary of the theoretical foundation of different DECT formalisms.

	μ parametrization	Z definition	Requires CT calibration
Bazalova et al.	$\mu = \rho_e \sum_i w_i (Z^4 F(E_i, Z) + G(E_i, Z))$	Mayneord ($m = 3.5$)	No
Landry et al. #1 and #2	$\mu = \rho_{\rm e} \left(A + BZ^m + CZ^n \right)$	Mayneord ($m = 3.3$)	Yes
Hünemohr et al. #1 and #2	$\mu = ho_{ extsf{e}} \left(lpha_{\overline{E^{l}}}^{Z^{m}} + eta ight)$	Mayneord ($m = 3.1$)	Yes
Bourque et al.	$\mu/\mu_{\rm w} = \rho_{\rm e} \sum_{m=1}^{M} b_m Z^{n-1}$	Behavior of electronic cross sections for elements	Yes
Van Abbema et al.	$\mu = \int_0^\infty w(E)_{ m e} \sigma^{ m tot}(E,\widehat{Z}) { m d}E$	Behavior of $\frac{\mu_{i}}{\mu_{i}}$ for mixtures	No
Han et al.	$\mu = c_1 \mu_1 + c_2 \mu_2$	None	Yes
Lalonde and Bouchard	$\mu/\mu_{\rm w} = \bar{y}_0 f_0 + \sum_{k=1}^K y_k f_k$	None	Yes

4. CT calibration for use in RT

- Once you have a calibrated model, you can infer your material parameters from it
- **Examples** are
 - Electron density and effective atomic number
 - Fractional weights of base materials (e.g., eigentissues)
- The number of energies define the number of resolvable parameters: **number of energies** ≥ **number of parameters**

 $\begin{array}{c} \text{Material} \\ \text{decomposition} \end{array} \left(\begin{array}{c} u_1 \\ \vdots \\ u_N \end{array} \right) = \left(\begin{array}{c} f_{11} & \cdots & f_{1N} \\ \vdots & \ddots & \vdots \\ f_{N1} & \cdots & f_{NN} \end{array} \right) \left(\begin{array}{c} \xi_1 \\ \vdots \\ \xi_N \end{array} \right)$

Parametric model

 $u_1 = f_1(\xi_1, ..., \xi_N)$ $u_N = f_N(\xi_1, ..., \xi_N)$

The number of parameters ξ is typically equal to the number of energies N

Example of Schneider et al. 1996 applied to SECT and W&W data

Various DECT formalisms models (Bär et al., Med Phys 2017)

TABLE II. Summary of different formalisms to predict tissue parameters with DECT.

	EAN	<i>I</i> -value	ED
Bazalova et al. Landry et al. #1 and #2 Hünemohr et al. #1 and #2	solve $\frac{\mu_{i}}{\mu_{i}}$ numerically solve $\frac{\mu_{i}}{\mu_{i}}$ for Z substitute $\hat{\rho}_{e}$	Yang et al. Yang et al. Bragg additivity rule Yang et al. Bragg additivity rule	substitute \widehat{Z} $\widehat{\rho}_{e} = \frac{\Delta HU}{1000} + 1$ $\widehat{\rho}_{e} = \frac{1}{\beta} \frac{\mathscr{U}_{\mu} - \mathscr{B} \mathscr{U}_{\mu}}{\mathscr{B}_{1} - \mathscr{B} \mathscr{U}_{\mu}}$
Bourque et al.	$Z_{\rm eff} = \sum_{k=1}^{n} c_k 1^{k-1}$	$5^{\rm m}$ -order fit with $Z_{\rm med}$	$\hat{ ho}_{\mathrm{e,L/H}} = rac{M_{\mathrm{e,L/H}}}{\sum_{m=1}^{M} b_{m,\mathrm{L/H}} Z_{\mathrm{eff}}^{m-1}}$
Han et al. Lalonde and Bouchard	None None	$\widehat{I}_x = f_I(\frac{c_1}{c_1+c_2}) \exp(\frac{c_1\rho_{e1}\ln(l_1)+c_2\rho_{e2}\ln(l_2)}{c_1\rho_{e1}+c_2\rho_{e2}})$ Bragg additivity rule	$\widehat{\rho}_{ex} = c_1 \rho_{e1} + \rho_{e2}$ $\widehat{\rho}_e = \overline{y}_0 + \rho_{e1} + \rho_{e2}$

4. CT calibration for use in RT

- Our ability to resolve a system of equation depends on its conditioning
- With linear systems, we use the *condition number* to evaluate the robustness of the system to its solution
- It is crucial to choose a model and a set of optimal scanning parameters that will yield the best condition number of your system
- **Dual-energy CT Multi-energy CT** Resolving multi-energy CT info involves the use of linear systems $\mathbf{y} = \mathbf{M}\mathbf{x} \Leftrightarrow \mathbf{x} = \mathbf{M}^{-1}\mathbf{y}$ The matrix **M**⁻¹ acts as an "amplifier" on the • N^{1/2} measured **y**. The condition number of a matrix tells Condition number how experimental errors are amplified: **Denoizing is** $\frac{|\boldsymbol{\delta \mathbf{x}}|}{|\mathbf{x}|} \leq \kappa \left(\mathbf{M}\right) \frac{|\boldsymbol{\delta \mathbf{y}}|}{|\mathbf{y}|}$ necessary! With the condition number defined as 10¹ L 140/140Sn $\kappa\left(\mathbf{M}
 ight)\equiv\left|\left|\mathbf{M}
 ight|\right|\left|\left|\mathbf{M}^{-1}
 ight|\right|$ 3 100/1405 100/140 80/140Sr 80/140 80/100 Number of dimensions Energy couple (kVp/kVp) 14

5. Key radiotherapy quantities from CT

- All formalisms can yield "direct" estimations of electron density
- The ones with effective Z can yield an estimation of the *I*value via additional fitting
- The parametric method benefits from natural correlations in human tissues

Figure 3. Parametrization of the ICRP mean excitation energy as a function of the EAN defined in this paper for human tissues.

- Some approaches can yield "direct" elemental composition and density estimations
 - Eigentissue decomposition (Lalonde and Bouchard, PMB 2016)
 - Parametric approach (Hünemohr et al., Med Phys 2014)

Example of eigentissue decomposition with a Siemens SOMATOM Definition Flash DSCT

5. Key radiotherapy quantities from CT

Contrast scans

- The use of contrast agent can improve the localization of tumors
- Virtual non-contrast
 - Dual- and multi-energy CT enable to determine contrast agent concentrations and therefore produce non-contrast images by virtually removing the agent

 PCCT can manage several contrast agents in one scan

Take-home message: why spectral CT?

Questions?

"He must be very ignorant for he answers every question he is asked" - Voltaire.

Selected reference (there are many others mentioned in this presentation and in literature!)

- Schneider, U., Pedroni, E. and Lomax, A., 1996. The calibration of CT Hounsfield units for radiotherapy treatment planning. Physics in Medicine & Biology, 41(1), p.111.
- Schneider, W., Bortfeld, T. and Schlegel, W., 2000. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. *Physics in Medicine & Biology*, 45(2), p.459.
- Williamson, J.F., Li, S., Devic, S., Whiting, B.R. and Lerma, F.A., 2006. On two-parameter models of photon cross sections: Application to dual-energy CT imaging. Medical physics, 33(11), pp.4115-4129.
- Flohr, T.G., McCollough, C.H., Bruder, H., Petersilka, M., Gruber, K., Süβ, C., Grasruck, M., Stierstorfer, K., Krauss, B., Raupach, R. and Primak, A.N., 2006. First performance evaluation of a dual-source CT (DSCT) system. European radiology, 16(2), pp.256-268.
- Schlomka, J., Roessl, E., Dorscheid, R., Dill, S., Martens, G., Istel, T., Bäumer, C., Herrmann, C., Steadman, R., Zeitler, G. and Livne, A., 2008. Experimental feasibility of multi-energy photon-counting Kedge imaging in pre-clinical computed tomography. Physics in Medicine & Biology, 53(15), p.4031.
- Bazalova, M., Carrier, J.F., Beaulieu, L. and Verhaegen, F., 2008. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. *Physics in Medicine & Biology*, 53(9), p.2439.
- Yang, M., Virshup, G., Clayton, J., Zhu, X.R., Mohan, R. and Dong, L., 2010. Theoretical variance analysis of single-and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues. Physics in Medicine & Biology, 55(5), p.1343.
- Saito, M., 2012. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Medical physics, 39(4), pp.2021-2030.
- Landry, G., Seco, J., Gaudreault, M. and Verhaegen, F., 2013. Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients.
 Physics in Medicine & Biology, 58(19), p.6851.
- Bourque, A.E., Carrier, J.F. and Bouchard, H., 2014. A stoichiometric calibration method for dual energy computed tomography. Physics in Medicine & Biology, 59(8), p.2059.
- Hünemohr, N., Paganetti, H., Greilich, S., Jäkel, O. and Seco, J., 2014. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy. Medical physics, 41(6Part1), p.061714.
- Lalonde, A. and Bouchard, H., 2016. A general method to derive tissue parameters for Monte Carlo dose calculation with multi-energy CT. Physics in Medicine & Biology, 61(22), p.8044.
- van Elmpt, W., Landry, G., Das, M. and Verhaegen, F., 2016. Dual energy CT in radiotherapy: current applications and future outlook. Radiotherapy and Oncology, 119(1), pp.137-144.
- Lalonde, A., Bär, E. and Bouchard, H., 2017. A Bayesian approach to solve proton stopping powers from noisy multi-energy CT data. Medical physics, 44(10), pp.5293-5302.
- Bär, E., Lalonde, A., Royle, G., Lu, H.M. and Bouchard, H., 2017. The potential of dual-energy CT to reduce proton beam range uncertainties. Medical physics, 44(6), pp.2332-2344.
- Panta, R.K., Butler, A.P., Butler, P.H., de Ruiter, N.J., Bell, S.T., Walsh, M.F., Doesburg, R.M., Chernoglazov, A.I., Goulter, B.P., Carbonez, P. and Damet, J., 2018, November. First human imagine MARS photon-counting CT. In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) (pp. 1-7). IEEE.