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Objectives of this talk

At the end of this talk, you will be able to

1. Define the need for CT during proton beam treatment planning
2. Summarize the principles of CT and the role of X-ray energy on data
3. Summarize various CT technologies for resolving energy
4. Explain the principles of CT calibration for radiotherapy
5. Summarize the principles for extracting key radiotherapy quantities from CT
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1. CT during proton treatment planning

Roles of CT in radiotherapy treatment planning
1. Positioning : to provide an accurate

representation of the patient geometry
at the time of planning

2. Identification: to display image contrast
provided by local variations of density
and elemental composition

3. Quantification: to enable the conversion of 
CT numbers into radiotherapy quantities
that are necessary for treatment planning
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1. CT during proton treatment planning

• Proton range uncertainties can be reduced by 
more than 2% with Monte Carlo calculations
compared to conventional methods
(Paganetti, PMB 2012)

! This is mostly due to the ability of MC to model range 
degradation

• Monte Carlo requires key input quantities to 
model interactions in human tissues

! Macroscopic interaction cross sections
! Stopping power 

• There are at least 10 different physical processes relevant to radiotherapy (i.e., 
requiring the use of cross sections) 

• Cross sections are energy- and Z-dependent and (mostly) unseparable functions
• Therefore dimensionality is governed by elemental composition
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1. CT during proton treatment planning
Macroscopic cross sections 𝝨 are required to 

sample the distance between discrete 
interactions. They are linear combination of 

elemental atomic cross sections

𝝆 : mass density of medium (g/cm3)
𝝈a (E, Z i) : atomic cross section of ith element (cm2)
NA : Avogadro’s constant (mol-1)
Ai : molar mass of ith element (g/mol)
wi : elemental weight of ith element

Collision stopping power is required to determine 
the energy loss between steps.  

I: mean excitation energy of medium (eV)
𝚫 :  energy transfer cutoff (MeV)
𝛿 : density effect correction
Ce: shell correction
F : higher-order corrections

• Elemental compositions of human tissues by Woodard
and White (1986)

! 13 elements: H, C, N, O, Na, Mg, P, S, Cl, Ca, Fe, I
! The 6 most important (> 0.6%) are H, C, N, O, P, Ca
! Ex. of tissues with elemental fractional weights below

• SP is directly proportional to electron density, thus and have direct impact on range
• I-values uncertainties can have an impact of up 1.1% on range (Bär et al., PMB 2018)

Condensed history use MS theory to sample a 
combined deflection angle per step

X0: radiation length being a function of 𝝆Z2/A



2. Principles of CT and role of X-ray energy on data
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Tomographic scanning 
object

Monochromatic
sinogram

Reconstructed
image

• Typical CT reconstruction assumes 
monoenergetic scans. This causes 
an artefact called beam hardening, 
which results from the change in 
photon spectra as the X-ray travel 
through the object.

• Mathematically, the sinogram 
equation accounts for these 
spectral changes but it is 
impossible to resolve it exactly 
without spectral information.

CT theory: the conversion of a 2D function into a sinogram 
representation is known as a Radon transform and its inverse 

operation often referred to as Filtered Back Projection 

with the filter and the filtered projection

The sinogram equation and the monoenergetic
approximation to resolve an effective 

attenuation cofficient

Example of BH 
artefact for a 

homogeneous
cylindrical
phantom



2. Principles of CT and role of X-ray energy on data
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• For technical reasons, it is preferred to report 
the data in terms of units relative to water: 
Hounsfield unit 

• With ideal BH artefact correction algorithms, 
CT is an instrument to measure 3D 
distributions of X-ray attenuation coefficients

Change of curve 
caused by 

increase in Z

𝜇W: attenuation coefficient of water (cm-1)
𝝆e: electron density relative to that of water
𝜆i: electronic fraction of ith element
f: electronic cross section relative to that of water and function of energy and Z

effective atomic 
number



2. Principles of CT and role of X-ray energy on data

• Spectral CT opens the possibility to resolve information contained 
in CT data with more than 1 degree of freedom

! Elemental composition and mass density
! Parametric information resulting from elemental composition and mass density

• There are 2 ways to resolve information for RT
! Image-based characterization direction on spectral HU
! Resolving at the pre-reconstruction stage (raw data) to obtain sinograms of 

physical quantities 
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3. CT technologies for resolving energy
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• For treatment planning we rely on 
CT’s geometrical accuracy and speed 
of acquisition 

• In conventional SECT, clinical dose 
calculation algorithms assign a single 
CT information per voxel 

! SPR lookup tables are used for semi-
empirical dose calculation algorithms

! Monte Carlo inputs require additional 
segmentation (Schneider et al., PMB 2000)
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In conventional SECT, we rely on natural correlations in human tissues

Mutic et al., Med Phys 2003



3. CT technologies for resolving energy
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• Spectral CT offers a change of 
paradigm:
! HU-SPR lookup tables are no 

longer needed
! N independent information allows for 

solving N parameters

Siemens photon counting

Dual-source CT (Siemens) Rapid kV switchting (GE) Dual-layer detector (Philips)

Spectral CT: principles of operation of some 
commercial scanners and other scanners 

under development

Ronaldson et al., JINST 2011

CERN’s technologies (MARS)

https://www.siemens-healthineers.com/



Experimental measurements of SPR/range with animal tissue samples: improvements with DECT shown in 4 independent
recent studies – the adapted approach of Schaffner and Pedroni, PMB 1998

3. CT technologies for resolving energy
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Xie et al., PMB 2018 

*Also quite a lot of work in literature to acknowledge on DECT: Bazalova et al. 2008; Yang et al. 2010, 2012; Landry et al. 2011, 2013a, 2013b; Hunemohr et al. 
2014a, 2014b; Bourque et al. 2014; Han et al. 2016, 2017; Möhler et al., 2016, Wohlfahrt et al. 2017; Berndt et al. 2017, Almeida et al. 2018;

Möhler et al., PMB 2018 
Taasti et al., PMB 2017 Bär et al., Med Phys 2018 

Simard et al., Med Phys 2020
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Experimental measurements
with MARS PCCT showed

promise in gaining accuracy
beyond 2 energies

*Also quite a lot of work in literature to acknowledge on MECT: Lalonde & 
Bouchard 2016, Lalonde et al. 2017, Lalonde et al. 2018; Simard et al. 2019; 



4. CT calibration for use in RT
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• There exists 2 types of approaches (pre/post recon.) to spectral CT and several models for CT data
• All require a calibration phantom to resolve unknowns of the model to perform estimates

! Use of calibration materials for which elemental composition are density is known
! Solve coefficient with maximum likelihood

Various DECT theoretical models (Bär et al., Med Phys  2017)
Original idea of CT calibration 
(Schneider et al., PMB 1996)

Example of 
calibration 
phantom



4. CT calibration for use in RT
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• Once you have a calibrated model, you can infer your 
material parameters from it

• Examples are 
! Electron density and effective atomic number
! Fractional weights of base materials (e.g., eigentissues)

• The number of energies define the number of resolvable 
parameters: number of energies ≥ number of parameters

Various DECT formalisms models (Bär et al., Med Phys  2017)

Material 
decomposition

Parametric 
model 

The number of 
parameters 𝜉 is 

typically equal to the 
number of energies N

-1000 -500 0 500 1000 1500 2000 2500 3000
CT number

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

25
0 

M
eV

 S
PR

HU-SPR curve 100 kVp

Example of Schneider et al. 1996 
applied to SECT and W&W data



4. CT calibration for use in RT
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• Our ability to resolve a system of equation depends on its conditioning
• With linear systems, we use the condition number to evaluate the robustness of the system to its 

solution 
• It is crucial to choose a model and a set of optimal scanning parameters that will yield the best 

condition number of your system

Dual-energy CT• Resolving multi-energy CT info involves the use of 
linear systems

• The matrix M-1 acts as an "amplifier" on the 
measured y. The condition number of a matrix tells 
how experimental errors are amplified:

! With the condition number defined as
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5. Key radiotherapy quantities from CT
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• All formalisms can yield “direct” 
estimations of electron density

• The ones with effective Z can 
yield an estimation of the I-
value via additional fitting

• The parametric method benefits 
from natural correlations in 
human tissues

• Some approaches can yield “direct” 
elemental composition and density 
estimations
• Eigentissue decomposition (Lalonde 

and Bouchard, PMB 2016)
• Parametric approach (Hünemohr et 

al., Med Phys 2014)

Yang et al., PMB 2010 Bourque et al., PMB 2014

Example of 
eigentissue

decomposition
with a Siemens 

SOMATOM 
Definition Flash 

DSCT

*Fit adapted to Zmed not Zeff



5. Key radiotherapy quantities from CT
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• Contrast scans
! The use of contrast agent can 

improve the localization of tumors

• Virtual non-contrast
! Dual- and multi-energy CT enable 

to determine contrast agent 
concentrations and therefore 
produce non-contrast images by 
virtually removing the agent

• Many contrast agents
! PCCT can manage several contrast 

agents in one scan

Lalonde et al., Med Phys 2019

Moghiseh et al., JSM Biomed
Im Data 2016.

Cormode et al., Scien Reports 
2017

True non-contrast Contrast-enhanced Virtual non-contrast



Take-home message: why spectral CT?
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voxelvoxel

What we measure in CT: 
how photons interact

What we need for RT: 
how p+ beams interact

The connection: 
elemental composition and density



Questions?
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“He must be very ignorant for he answers every question he is asked” 
- Voltaire.


