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1. CT during proton treatment planning
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Roles of CT in radiotherapy treatment planning

Positioning : to provide an accurate 2. ldentification: to display image contrast 3. Quantification: to enable the conversion of
representation of the patient geometry provided by local variations of density CT numbers into radiotherapy quantities
at the time of planning and elemental composition

that are necessary for treatment planning

RSP for 195 MeV p+




1. CT during proton treatment planning
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e There are at least 10 different physical processes relevant to radiotherapy (i.e.,
requiring the use of cross sections)

/ Proton range uncertainties can be reduced by
more than 2% with Monte Carlo calculations
compared to conventional methods
(Paganetti, PMB 2012)

. This is mostly due to the ability of MC to model range

e  Cross sections are energy- and Z-dependent and (mostly) unseparable functions

e Therefore dimensionality is governed by elemental composition

degradation Interaction Incident particle Target Z-dependance of o, (E, Z)
. . . Rayleigh scattering 0% atom F(2)
* Monte Carlo requires key input quantities to Photo-electric effect v atom opn (Z) ~ Z°
. . . . Compton scattering ot bound electrons S(2)
model interactions in human tissues Pair and triplet production ¥ nucleus ~Z(Z+£(2))G1(Z) and Z(Z+£(2))G2(Z)
Macroscopic interaction cross sections Bremsstrahlung e, pt nucleus same as above
y P Collision stopping power e-, p+ bound electrons ~ Zand ZInI
. Stopping power Coulomb scattering e, p+ nucleus Z%R(Z) R\
EM collision (ionisation) e-, p+ bound electrons ~ Z (except for EII) [ ) )) )
Nuclear p+ nucleus isotope-specific N

— Atomic relaxation all atom element-specific



1. CT during proton treatment planning

Macroscopic cross sections £ are required to Collision stopping power is required to determine
sample the distance between discrete the energy loss between steps.
interactions. They are linear combination of
elemental atomic cross sections Sa(T) =p§NA2”T%T602 [111 <2me02272252Tup> g (1 N Iif’up ) s 2?: +F]

I: mean excitation energy of medium (eV) T = 2m..c? (’Yz - 1)
A : energy transfer cutoff (MeV) max = " o\ 2
¢ : density effect correction 1+2y (mf) * (Mf)
C.: shell correction

F : higher-order corrections

Tup =min (A, Tinax)

N
D :pzwifaa (E7 Z’i)

Condensed history use MS theory to sample a

p : mass density of medium (g/cm ) combined deflection angle per step

0. (E,Z; : atomic cross section of it element (cm?)

N, : Avogadro’s constant (mol1) L 0 2

A; - molar mass of i element (g/mol) : 2| 36 Mev T 1130038 1n( L

w; : elemental weight of ith element P (3, Q) ~ke Bpc XT[ +o “(XT))] Xo: radiation length being a function of pZ%/A
o Elemental compositions of human tissues by Woodard o SP is directly proportional to electron density, thus and have direct impact on range

and White (1986)
o 13 elements: H, C, N, O, Na, Mg, P, S, Cl, Ca, Fe, |

° I-values uncertainties can have an impact of up 1.1% on range (Bar et al., PMB 2018)

Table 6. Calculated beam ranges in terms of Rso (in mm) using Monte Carlo proton beam transport simulations. The uncertainties
reported are resulting from the uncertainties on our optimized I-values and the differences are taken between ranges simulated with ICRU-
recommended I-values and ranges simulated with our optimized I-values.

o The 6 most important (>0.6%) are H, C, N, O, P, Ca
¢ Ex. of tissues with elemental fractional weights below

Liquids and solids
Tissue p (g/ecm®)[ H C N O [Na Mg| P S Cl K| Ca| Fe I . . . 0 . o
Tung deflated  0.260  [0.103 0.105 0.031 0.749[0.002 0.000[0.002 [0.003 0.003 0.002] 0.000 [0.000 0.000 Material Range ICRU Range this work Uncertainty (%) Difference (%)
Adipose tissue  0.950 0.114 0.598 0.007 0.278[0.001 0.000{0.000 [0.001 0.001 0.000|0.000]0.000 0.000 i
Skeletal muscle ~ 1.050 [0.102 0.143 0.034 0.7100.001 0.000{0.002 [0.003 0.001 0.004]0.000(0.000 0.000 ‘Water 202.25 203.35 0.95 (0.47%) 1.10 (0.54%)
Liver 1.060 [0.102 0.139 0.030 0.716]0.002 0.000{0.003 [0.003 0.002 0.003{0.000 [0.000 0.000 i . .
Thyroid 1.050 [0.104 0.119 0.024 0.745]0.002 0.000{0.001 [0.001 0.002 0.001]0.0000.000 0.001 Adipose tissue 3 211.97 212.72 0.79 (0.37%) 0.75 (0.35%)
Sternum 1.250 [0.078 0.316 0.037 0.438/0.000 0.001{0.040 [0.002 0.001 0.001{0.085 [0.001 0.000 /)
Vert. col. whole 1330 |0.071 0.258 0.036 0.472/0.001 0.001/0.051 [0.003 0.001 0.001{0.105{0.000 0.000 Muscle skeletal 1 194.01 194.86 0.72 (0.37%) 0.85 (0.44%)
Ribs 2796 1.410 [0.064 0.263 0.039 0.436]0.001 0.001{0.060 [0.003 0.001 0.001{0.131 [0.000 0.000 Brain white matter 194.68 195.55 0.72 (0.37%) 0.88 (0.4
Ribs 10" 1.520 [0.056 0.235 0.040 0.434]0.001 0.001{0.072 [0.003 0.001 0.001{0.156 [0.000 0.000
Sacrum male 1.290 [0.074 0.302 0.037 0.438(0.000 0.001{0.045 [0.002 0.001 0.001{0.098|0.001 0.000 Femur whole 151.49 152.34 0.47 (0.31%) 0.85 (0.56%)
Mandible 1.680 [0.046 0.199 0.041 0.435]0.001 0.002{0.086 [0.003 0.000 0.000( 0.187 [0.000 0.000

- Cortical bone 1.920  [0.034 0.155 0.042 0.435[0.001 0.002]0.103 [0.003 0.000 0.000{ 0.225[0.000 0.000 Cortical bone 119.46 120.28 0.50 (0.42%) 0.82 (0.68%)



2. Principles of CT and role of X-ray energy on data
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object sinogram image
/ CT theory: the conversion of a 2D function into a sinogram \

representation is known as a Radon transform and its inverse
operation often referred to as Filtered Back Projection

%[f(w,y)]gﬁ:p(é,v):/_w /_oof(w,y)5(£—wcosv—ysinv)dwdy

A (€N, = f(2,y) =/ p(xcosy + ysinvy,vy) dy
0

K with the filter h(z) =Z ' [|k|],  and the filtered projection

P& =& ) *h ()

(Typical CT reconstruction assug

monoenergetic scans. This causes
an artefact called beam hardening,
which results from the change in
photon spectra as the X-ray travel
through the object.

Example of BH

artefact for a

homogeneous
cylindrical
phantom

e  Mathematically, the sinogram
equation accounts for these
spectral changes but it is
impossible to resolve it exactly
without spectral information.

hvmax
T = [ b (w) e Fen e ahy
0

e Pl

/

The sinogram equation and the monoene D
approximation to resolve an effective 7.
attenuation cofficient

)) )

AN



2. Principles of CT and role of X-ray energy on data

With ideal BH artefact correction algorithms,
CT is an instrument to measure 3D
distributions of X-ray attenuation coefficients

How

uw: attenuation coefficient of water (cm-1)
p.: electron density relative to that of water
A;: electronic fraction of ith element

Electronic cross section (barns)

10°

XCOM data

LA :peZ)\if (E7 Zi) = pef (E}Z)

effective atomic
number

f: electronic cross section relative to that of water and function of energy and Z

102
Photon energy (MeV)

10°

e Fortechnical reasons, it is preferred to report
the data in terms of units relative to water:

Hounsfield unit

7’

HU =1000 | — —

[w

Theoretical HU-ED curve
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2. Principles of CT and role of X-ray energy on data
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Colored tomographic

Position ¢ (cm)

=

7 (deg)

scanning object PoIYChromatic Decomposed Reconstructed
sinogram monochromatic sinograms monochromatic images
/ \ Raw data-based Image-based
e Spectral CT opens the possibility to resolve information contained approach Totreatment  approach

planning

in CT data with more than 1 degree of freedom
. Elemental composition and mass density
. Parametric information resulting from elemental composition and mass density

e There are 2 ways to resolve information for RT

. Image-based characterization direction on spectral HU

. Resolving at the pre-reconstruction stage (raw data) to obtain sinograms of
physical quantities /




3. CT technologies for resolving energy

For treatment planning we rely on
CT’s geometrical accuracy and speed
of acquisition

In conventional SECT, clinical dose
calculation algorithms assign a single
CT information per voxel

. SPRlookup tables are used for semi-
empirical dose calculation algorithms

. Monte Carlo inputs require additional
segmentation (Schneider et al., PMB ZOW

250 MeV SPR

04 .

HU-SPR curve

100 kVp

HU ambiguously

specifies SPR:
up to ~3% error

250 MeV SPR

HU-SPR curve 100 kVp
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In conventional SECT, we rely on natural correlations in human tissues\
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3. CT technologies for resolving energy
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Ronaldson et al., JINST 2011




3. CT technologies for resolving energy

Experimental measurements of SPR/range with animal tissue samples: improvements with DECT shown in 4 independent

recent studies — the adapted approach of Schaffner and Pedroni, PMB 1998 ,
Bdr et al., Med Phys 2018 . : Taasti et al., PMB 2017
Mohler et al., PMB 2018 Xie et al., PMB 2018
Pig rib 15 Pig muscle 5 o Relative SPR error for tissue samples
4 1.0 1+ ! ! ! ! ! ! ! ! ! ! ! B ! ! SECT 8k #-AS - 120 kVp (SECT), RMSE = 2.8%
= 2 ’ x i 118 DECT +~AS - 80/140 kVp, RMSE = 1.4%
£ . [Eee : $ § x g " || Foree - sarsntsokvp,  RMSE - 09
oS Y, S ot =R i : « x e B - =5 x| _ 61|+ Foven - 30/Smid0 kve Zo%
2L Ef - S i e S 3 oo ] 5L| + Fiaan- 100n140KVp,  RMSE - 13%
- 1.0 - g X x 2 § of +—Edge - Au120/Sn120 kVp, RMSE = 1.5%
. p=00627 5 | | & g |
SECT DECT p,-Z DECTETD 8 SECT DECT p,-Z DECTETD g -1 45 g)\ % 3+ :‘
15 . S 1 b0 25 1 2 B e~ A\ O
” 2 3 % DECT x < @ o K —== \ - /
gos g 5o SECT 2 1 af ¢ 2 - .
% oo i € o - -3 . s T \‘** / \\://’\\,,., N
f,-a.s . . % E 2 * L L L L L L L L L L L L L a3l \,(
anl v R E . 7y .l
s v 4 ¢ ¢ &8 34 3 3 3 5§ & £ 2 2 a2 0 Bong Brai, Hidng, Live, MUSc/ Wafer ’ Lo e
: SECT  DECTp,-Z DECTETD SECT  DECTp,-Z DECTETD & & 2 32 3 gz g = o= Y = T F E OE B T E § § 2§ & 3 oz
T 3 % = 2 3 "-; $ 2 x z & £ 23 & x ¥ 3 2
S 3 & & 5 35 € 5 5 g & % % 3
§ & & ¢ &3 ¢ 3
*Also quite a lot of work in literature to acknowledge on DECT: Bazalova et al. 2008; Yang et al. 2010, 2012; Landry et al. 2011, 2013a, 2013b; Hunemohr et al. ©
20143, 2014b; Bourque et al. 2014; Han et al. 2016, 2017; Mohler et al., 2016, Wohlfahrt et al. 2017; Berndt et al. 2017, Almeida et al. 2018;
2 Gammex 467 Gammex 467 + 472 Gammex 467 Gammex 467 + 472
. P——— T 2 PC'""""“!’I T T T T T T T T
Expe rl menta I measu reme nts ECT - eigenmaterials S
) ;\? 15 PCCT - eigenmaterials 4 215
with MARS PCCT showed 5 <
a o o _a 1 E1
L o
promise in gaining accuracy 2 g
. 0.5 0.5
beyond 2 energies
0 Py SPR P, SPR 0 H C+t0 N P Ca H CtO N P Ca I [ ) ‘ \

siseroiterasiotiof- work in literature to acknowledge on MECT: Lalonde & Simard et al., Med Phys 2020
11 Bomehard 2016, Lalonde et al. 2017, Lalonde et al. 2018; Simard et al. 2019;



Scaled Hounsfield value (experimental)
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4. CT calibration for use in RT

There exists 2 types of approaches (pre/post recon.) to spectral CT and several models for CT data
All require a calibration phantom to resolve unknowns of the model to perform estimates

. Use of calibration materials for which elemental composition are density is known
. Solve coefficient with maximum likelihood

\

Original idea of CT calibration

(Schneider et al., PMB 1996)
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Various DECT theoretical models (Bar et al., Med Phys 2017)

TaBLE I. Summary of the theoretical foundation of different DECT formalisms.

1 parametrization Z definition Requires CT calibration
Bazalovaet al. w=p, > w(Z*F(E,Z) + G(E,Z)) Mayneord (m = 3.5)
Landry et al. #1 and #2 n=p.(A+BZ"+CZ") Mayneord (m = 3.3) Yes
Hiinemohr et al. #1 and #2 1= pe(odr + B) Mayneord (m = 3.1) Yes
Bourque et al. Wty = Pe Eﬁf:] b, 2" Behavior of electronic Yes
cross sections for elements
Van Abbema et al. w= [ w(E) 0" (E,Z)dE Behavior of /- for mixtures
Han et al. n=ciy; +cop None Yes
Lalonde and Bouchard w/ e =yofo + Eszl Yife None Yes

)



4. CT calibration for use in RT

N

Ui Jin €1
Material . —

decomposition

. . J11
Once you have a calibrated model, you can infer your )
material parameters from it

Uu
o Examples are N fn1 fnN En

. Electron density and effective atomic number
The number of
parameters € is

typically equal to the
number of energies N

. Fractional weights of base materials (e.g., eigentissues)

e The number of energies define the number of resolvable
K parameters: number of energies 2 number of parameters/

Parametric
model

Ui :fl(é.la 7§N)

uny =fn (1, 6N)

Example of Schneider et al. 1996
applied to SECT and W&W data

HU-SPR curve 100 kVp

Various DECT formalisms models (Bar et al., Med Phys 2017)

- TasLE II. Summary of different formalisms to predict tissue parameters with DECT.

250 MeV SPR
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solve ;= numerically
u

solve - forZ

substitute p,

~ X a

Zeft = Zk:l Ckrk !

solve ﬁ—_{ numerically
None
None

Yang et al.

Yang et al. Bragg additivity rule
Yang et al. Bragg additivity rule
5% _order fit with Znea

Yang et al.
Lo = fi(555) expl
Bragg additivity rule

c1Per In(h)+e Py lﬂ(lz))
C1Pe1 +C2 P

substitute Z

~ _ AHU
Pe= "l +1
S~ lgny—gup
Pe=7p

8L—8H
UL /|

ﬁe.L 3 e ——
S b

substitute Z

Per=C1Pa# 1Pei,
/ﬁe=}70+i )




4. CT calibration for use in RT

e OQur ability to resolve a system of equation depends on its conditioning \

With linear systems, we use the condition number to evaluate the robustness of the system to its
solution

It is crucial to choose a model and a set of optimal scanning parameters that will yield the best
K condition number of your system

/Resolving multi-energy CT info involves the useh Dual'energy CT MUItl'energy CT

linear systems

107

y =Mx < x =My N -7

e The matrix M1 acts as an "amplifier" on the . s -7
measured y. The condition number of a matrix tells
how experimental errors are amplified:

10° £

02k

Condition number
Condition number x N'/2

-7~ Denoizing is
[ox| <k (M) [9y] t gl /

| ly| RN ol e S necessary!

. e . - & \ Pie ' /
With the condition number defined as A N &

2 1S
10! I I I I | 10% - L L L | )
J— - 1 140/140Sn 100/140Sn 100/140 80/140Sn 80/140 80/100 2 3 ) 4 5 \ 6

I{/ M prm— M M Energy couple (kVp/kVp) Number of dimensions




5. Key radiotherapy quantities from CT

All formalisms can yield “direct”
estimations of electron density
The ones with effective Z can
yield an estimation of the /-
value via additional fitting

The parametric method benefits
from natural correlations in

\ human tissues

)
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Figure 3. The soft tissue group and bony tissue group had separate linear relationships between
the effective atomic number (EAN) and the logarithm of mean excitation energy (In I,) of the same

Yang et al., PMB 2010
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Thyroid Bone Tissue

P PP

Effective Atomic Number (EAN)

tissue. Shown are plots for 34 standard human biological tissues listed in table 1.

(-

Some approaches can yield “direct”
elemental composition and density
estimations

Eigentissue decomposition (Lalonde

and Bouchard, PMB 2016)

Parametric approach (Hinemohr et

al., Med Phys 2014)

~

/

Hydrogen mass content

Example of
eigentissue
decomposition
with a Siemens
SOMATOM
Definition Flash
DSCT
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Phosphorus mass content (%)

100 200 300 400

Bourque et al., PMB 2014
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Figure 3. Parametrization of the ICRP mean excitation energy as a function of the EAN
defined in this paper for human tissues.
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5. Key radiotherapy quantities from CT

K Contrast scans \

<

» The use of contrast agent can

e Virtual non-contrast

*

improve the localization of tumors

Dual- and multi-energy CT enable
to determine contrast agent
concentrations and therefore

produce non-contrast images by
virtually removing the agent /

Many contrast agents

*

PCCT can manage several contrast
agents in one scan

Lalonde et al., Med Phys 2019

Dne -Dync

0 Gy .
True non-contrast Contrast-enhanced Virtual non-contrast

Cormode et al., Scien Reports
Moghiseh et al., JSM Biomed 2017
Im Data 2016 lodine

140mg/m

2mg/mL




Take-home message: why spectral CT?

N
What we measure in CT: The connection: What we need for RT:

how photons interact elemental composition and density how p+ beams interact
J

voxel

100 200 300 400 100 200 300 400

Calcium mass content (%) Mass density kglm3

100 200 300 400 100 200 300 400 100 200 300 400

A\
Q \\
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N 74
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e must be very ignorant for he answers every question he is asked”
- Voltaire.

Questions?

Selected reference (there are many others mentioned in this presentation and in literature!)
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