CBCT for image guidance and dose calculations

Brian Winey, Ph.D. Medical Physicist, MGH Assistant Professor, HMS

CBCT Imaging options

Anatomical Variations

Kevin Teo

MASSACHUSETTS GENERAL HOSPITAL **RADIATION ONCOLOGY**

•

CBCT

- Workflow, time
- Treatment position (or close)
- Imaging and Tx isocenter coincidence
- Lower image quality
- HU to RSP for dose calculations?
- 4D Imaging is challenging

CBCT Workflow and Time

Ring (couch mounted)

- Faster than Gantry rotation
- Not limited to a single imaging position
- Large FOV (>70cm)
- Complex calibration
- Image during Tx
- Gantry Mounted
 - Simple Calibration
 - Half-rotation small FOV

CBCT Image Quality

- Artifacts: streaks, scatter, beam hardening
- HU Accuracy
- Geometric Accuracy/Gantry Flex
- Motion

CBCT Developments

- Scatter reduction
- HU calibration
- Diagnostic Scanners (Toshiba 16 cm axial FOV scanner)
- Gantry isocenter callibrations

Aquilion ONE ViSION 0.5 mm x 320 detector 640 slices every rotation 16 cm of every rotation 0.275 sec/rotation

Artifact Correction Methods

- Deform CT to CBCT
- Scatter Model (low frequency)
- HU Look Up Table (LUT)
- A priori CT scatter correction
 - Analytic model
 - Machine learning
 - GAN and CNN

Correction Methods

Deform CT: Data from Kevin Teo (Penn)
Multiple publications (Penn and LMU Munich)

Veiga *et al IJROBP* 2016 Veiga *et al Biomed Phys Eng Exp* 2017

Correction Methods

Deform CT

Challenges when anatomy changes too much, especially with air cavities

CT

dCT

GENERAL HOSPITAL RADIATION ONCOLOGY

A priori Method

- Niu et al (Med Phys 2010) using *a priori* CT information and scatter kernel
- Reconstructions with RTK
- Compared to a uniform scatter correction model and baseline CBCT

Park et al Med Phys 2015

Dose Comparison: Phantoms

Park et al Med Phys 2015

Correction Methods

Deform versus a priori

Kurz et al Med Phys 2016

Patient Dose Calculations

Kurz et al Med Phys 43(10): 5635, 2016.

Dose [Gy]

A Priori Method

- Current Limitation is time
- Generally found to have HU accuracy and WEPL accuracy within 2-3 mm.
- ML methods have potential to dramatically increase the speed and the accuracy

Machine Learning

Hansen *et al Med Phys* 2018 https://github.com/dchansen/ScatterNet

DCNN

RADIATION ONCOLOGY

MEDICAL SCHOOL

Lalonde et al Submitted 2020

Head and Neck Variations

Weekly variations (current clinical imaging protocol)

20

10

-10

-30

Patient	1	2	3	4	5	6
Day 1	1.0	-4.1	-2.4	-3.4	4.1	4.2
Day 2	2.7	-1.9	0.0	2.4	2.3	13.0*
Day 3	5.2	0.3	3.4	-0.4	3.0	4.7
Day 4	5.3	1.8	2.6	0.3	6.1	5.1
Day 5	7.1	0.8	0.2	4.5	8.9	7.1
Day 6	8.3	9.0	3.0	6.4	7.6	5.5
Day 7			1.4			6.2
Day 8						5.1

Kim et al PMB 2017

HARVARD MEDICAL SCHOOI

CBCT Applications:

Triage

Kim et al PMB 2017

CBCT Applications:

Triage (U Penn)

Veiga et al IJROBP 2016

CBCT Applications:

- Triage (multiple possibilities)
- Dose Calculation
- Range verification
- Replanning... Not yet

Replanning

44

GPU Dose CalculationReoptimize?

A vector field (VF) from DIR links CT and CBCT.

The VF is employed to:

- **1** Transport contours to new geometry
- Warp IMPT plan (not dose). Per spot $s_i = (x_0, y_0, E_0)$:
 - 1: **Raytrace** central axis of s_i in CT to end of range (r_i)
 - 2: **Probe** VF at r_i coords: v_i
 - 3: Apply v_i to r_i coords: position where the r_i should be in the CBCT
 - 4: Apply v_i to $s \rightarrow$
 - $s'_i = (x_0 + \Delta v_x, y_0 + \Delta v_y, E_0)_i$
 - 5: **Raytrace** s'_i in CBCT
 - 6: Get ΔE_i

Botas et al PMB 2018

MASSACHUSETTS

Replanning

- Degrees of reoptimization
- Prioritize Targets/OARs (MCO role?)
- Match original or improve?

Current CBCT Daily Adaptation

- Daily adaptation with CBCT is close
- Rapid reconstruction with ML: 30 s
- Rapid GPU dose calculations (20-40 s)
- Reoptimization: seconds-minutes
- Contours?
- **QA**: ?

Robustness

- Is adaptive proton therapy required?
- What are the limits of robust planning?
- Uncertainty models: range and setup
- Motion? Deformations? Weight loss?

Trofimov et al

Conclusions

- CBCT is becoming more available and demonstrated as useful tools for setup and adaptive proton therapy: dose calculations, planning
- CBCT is now useable for WEPL and dose calculations with 1 mm/1% uncertainties
- Further research is needed for CBCT, 4D imaging, workflows, efficiency

Thank You!

http://gray.mgh.harvard.edu

