

Track-end objectives in intensity modulated proton therapy to reduce linear energy transfer

Jakob Ödén, Ph.D. Researcher @ RaySearch Laboratories AB jakob.oden@raysearchlabs.com

Disclosure

• Full-time employee as a Researcher at RaySearch Laboratories AB, Stockholm, Sweden

• Results mainly produced using a non-clinical research version of RayStation v9

Learning objectives

- To introduce proton track-end optimization as a tool to reduce...
 - ...linear energy transfer (LET) and relative biological effectiveness (RBE) in organs at risk (OARs) ...normal tissue complication probabilities (NTCP)

- To touch upon some comparisons with other optimization tools
 - LET optimization
 - Variable RBE optimization

Linear energy transfer (LET)

- LET is a macroscopic representation of the underlying microscopic energy deposition pattern
 - The unrestricted LET is the mean energy lost due to electronic interactions (*dE*) per unit track length (*dl*) [1]

• LET = LET_{$$\infty$$} = $\frac{dE_{\infty}}{dl}$ = S_{el}

- Spectrum of LET in a voxel -> Averaging of LET per voxel
 - Dose-averaged unrestricted LET (LET_d)

• LET_d(x) =
$$\frac{1}{\rho} \frac{\int_0^\infty \Phi_E(x) \cdot S_{el}^2(E) dE}{\int_0^\infty \Phi_E(x) \cdot S_{el}(E) dE}$$

RBE-weighted dose (D_{RBE}), LET_d and proton track-ends

• LET_d

- Low & constant in entrance region
- Higher & moderate increase in CTV
- Rapid increase at distal edge
- LET-dependent RBE model
 - Increased D_{RBE} with increasing LET_d
 - Extended biological range
- Proton track-ends
 - Distribution where the proton stops
 - Peak correlates with *increased* D_{RBE}
- Proton range is defined as...

...the depth at which half the protons that undergo only electromagnetic interactions have stopped

Proton plan optimization

- D_{RBE} objectives assuming some RBE model
 - One RBE model for all ROI:s (RBE=1.1 clinical standard)
 - Multiple RBE models in various combinations [1]
- D_{RBE} objectives combined with objectives on RBE surrogates
 - LET based optimization [2] -> minimizing a general composite objective function $F = f_D + f_{IET}$
 - f_D regular D_{RBE} based objective function
 - f_{LET} some LET-based objective to reduce/increase LET in the volume of interest
 - As a high LET in a low dose voxel has small biological effect, LET objectives are typically...
 - ...weighted with dose ($\omega \cdot LET \cdot dose$, acting as a simplistic RBE model)
 - ...and/or only active above a certain dose threshold

[1] e.g. Sánchez-Parcerisa et al. *Med. Phys.* 2019, Unkelbach & Paganetti *Semin. Radiat. Oncol.* 2018, Ödén & Traneus AAPM 2020 e-Poster: PO-GeP-T-712
[2] e.g. An et al. 2017, Bai et al. 2019, Giantsoudi et al. 2013, Unkelbach et al. 2016

Proton track-end optimization

- Aims at shifting where the protons stop (named track-ends (TE) here)
 - ▶ Reduce # of proton track-ends in OARs to reduce LET, RBE & NTCP
 - Increase # of proton track-ends in tumor volumes to increase LET, RBE & TCP
- Minimizing the general composite objective function *F* [1]

$$F = f_{D} + f_{TE} = f_{D} + \lambda_{TE}^{OAR} \times H(TE^{OAR} - TE_{max}^{OAR}) \times \frac{[TE^{OAR} - TE_{max}^{OAR}]^{2}}{[TE_{max}^{OAR}]^{2}}$$

- f_D regular D_{RBE} based objective function
- λ_{TE}^{OAR} the relative weight of the TE objective for the OAR
- TEOAR the ratio of proton TE:s stopping in the OAR to the total # of protons stopping in the patient
- TE_{max}^{OAR} the maximum allowable ratio of proton TE:s in the OAR to the total # of protons stopping in the patient
- H(x) the Heaviside step function being equal to 1 if x >0, else equal to 0

Patient example case

- Intracranial case
 - Prescribed dose (PD) of 54 Gy (RBE) in 30 fractions
- 4 different proton plans using the same beam arrangement
 - 1) <u>DOSEOpt:</u> $D_{RBE=1.1}$ objectives
 - 2) <u>vRBEopt:</u> D_{RBE=Wedenberg} objectives
 - 3) <u>LETopt:</u> D_{RBE=1.1} objectives + LET objectives for OARs
 - 4) <u>TEopt</u>: D_{RBE=1.1} objectives + TE objectives for OARs
- Clinical goals
 - RBE = 1.1
 - Wedenberg RBE model [1]: α/β of 10 Gy for CTV and 2 Gy for OARs
 - − Target: D_{RBE, 98%} ≥ 95% of PDD_{RBE, 2%} ≤ 105% of PD
 - Optical structures: $D_{RBE, 0.1\%} \leq 54$ Gy (RBE)
 - Brainstem: $D_{RBE, 0.1 \text{ cm}^3} \le 60 \text{ Gy (RBE)}$

[1] Wedenberg et al. Acta Oncol. 2013;52:580-588

D _{RBE} & LET _d	Clinical goals / D _{mean}	DOSEopt	vRBEopt	
	Min. target dose (RBE=1.1 / Wed)	YES / YES	NO / YES	
	OAR goals (RBE=1.1 / Wed)	YES / NO	YES / YES	
	D _{mean} for "Brain–CTV"	6.3 Gy	-25%	
D _{RBE=1.1}	D _{RBE=Wedenberg}		LET _d	
		of 54 (RBE) 120 115 115 105 95 85 75 50 25 10		keV/um 90 80 70 60 50 40 30 20 10 0

D _{RBE} & LET _d	Clinical goals / D _{mean}	DOSEopt	vRBEopt	TEopt
	Min. target dose (RBE=1.1 / Wed)	YES / YES	NO / YES	YES / YES
	OAR goals (RBE=1.1 / Wed)	YES / NO	YES / YES	YES / YES
	D _{mean} for "Brain–CTV"	6.3 Gy	-25%	+4%
D _{RBE=1.1}	D _{RBE=Wedenberg}		LET _d	
		of 54 «DBE»		keV/um
		120		9.0
		115		
				60
		95	E P	5.0
		85		4.0
		75	G	3.0
		25		2.0
		10		
		0		

D _{RBE} & LET _d	Clinical goals / D _{mean}	DOSEopt	vRBEopt	TEopt	LETopt
	Min. target dose (RBE=1.1 / Wed)	YES / YES	NO / YES	YES / YES	YES / YES
	OAR goals (RBE=1.1 / Wed)	YES / NO	YES / YES	YES / YES	YES / YES
	D _{mean} for "Brain–CTV"	6.3 Gy	-25%	+4%	+2%
D _{RBE=1.1}	D _{RBE=Wedenberg}		LET _d		
		of 54 /(RBE) 120 115 115 110 105 95 85 85 85 75 50 25 10		Image: Constrained state	keV/um 90 ↓ 80 70 ↓ 60 50 40 30 20 ↓ 1.0

Conclusions

- Proton optimization using LET, proton track-ends or variable RBE objectives is capable of...
 - ...reducing LET, RBE and potentially also NTCP in OARs...
 - ...increasing LET, RBE and potentially also TCP in tumor volumes...
 - ...while simultaneously fulfilling clinical goals based on RBE=1.1

- The resulting dose, LET and RBE distributions depend strongly on how...
 - ...the optimizer is implemented
 - ...the composite objective function

- Hence, results shown here might differ from other studies
 - One could argue that different optimization strategies at least have the potential of reaching similar solutions
 - Various opinions on this and how to move forward...

References & suggestions for further reading

- Proton RBE & RBE models
 - Carlson et al. Radiat. Res. 2008;169:447–59
 - Guan et al. Sci. Rep. 2015;5:9850
 - McNamara et al. *Phys. Med. Biol.* 2015;60:8399–8416
 - Ödén et al. *Med Phys* 2019;45:502–5
 - Paganetti et al. Phys. Med. Biol. 2014;59:R419–72
 - Paganetti et al. Med. Phys. Phys. Med. Biol. 2019;46:e53–78
 - Stewart et al. *Med. Phys.* 2018;45:925–52
 - Wedenberg et al. *Acta Oncol.* 2013; 52:580–588
- Variable proton RBE optimization
 - Frese et al. Int. J. Radiat. Oncol. Biol. Phys. 2011;79:80–88
 - Guan et al. Int. J. Part. Ther. 2018:5;160–71
 - Resch et al. *Phys. Medica* 2017:36 91–102
 - Sánchez-Parcerisa et al. Med. Phys. 2019;46:4276–4284
 - Unkelbach & Paganetti Semin. Radiat. Oncol. 2018;28:88–96

- LET optimization
 - An et al. *Med. Phys.* 2017;44:6138–6147
 - Bai et al. Phys. Med. Biol. 2019;64:025004
 - Bassler et al . Acta Oncol. 2014;53:25–32
 - Cao et al. Phys. Med. Biol. 2018;63:015013
 - Fager et al. Int. J. Radiat. Oncol. Biol. Phys. 2015;91:1057–1064
 - Giantsoudi et al Int. J. Radiat. Oncol. Biol. Phys. 2013;87:216–222
 - Tseung et al. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:1535–1543
 - Unkelbach et al. Int. J. Radiat. Oncol. Biol. Phys. 2016;96:1097–106
- Proton track-end optimization
 - Ödén Ph.D. thesis 2019 (http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-174012)
 - Ödén et al. Med Phys 2020;47:342-351
 - Traneus & Ödén Int. J. Radiat. Oncol. Biol. Phys. 2019:103;747–757

Thank you for the attention!

the same sec.

Jakob Ödén, Ph.D.

jakob.oden@raysearchlabs.com

In the second second