

Uncertainty and Sensitivity Analysis of Biological Modeling in Proton and Carbon Ion Treatment Planning

Department of Radiation Oncology July 14, 2020 | Dr. Florian Kamp

Research and development funds from ViewRay

Learning objectives

- Linear-quadratic model as basis for RBE modeling
 - Parameters
 - Isoeffective RBE definition
- Differences in RBE modeling between proton and carbon ions
 - Fragmentation
 - RBE prediction for carbon ions
- Uncertainties in RBE modeling
 - Origin, impact and analysis
 - Variance-based uncertainty and sensitivity analysis

MUKIINIKUM

Relative biological effectiveness (RBE)

Linear-quadratic (LQ) model:

$$S(d) = \exp(-\alpha d - \beta d^2)$$

Relative biological effectiveness:

$$RBE = \frac{d_x}{d_p} \bigg|_{S=const}$$
$$RBE = \frac{-\alpha_x + \sqrt{\alpha_x^2 + 4d_p\beta_x(\alpha_p + \beta_pd_p)}}{2\beta_x d_p}$$

biological dose-response modeling:

$$\alpha_{p}(\alpha_{x},\beta_{x},Z_{ion},LET_{ion},cell)$$

$$\beta_{p}(\alpha_{x},\beta_{x},Z_{ion},LET_{ion},cell)$$

RBE-weighted dose:

$$RWD = RBE \cdot d_p$$

$$RWD = RBE(\alpha_p(\dots), \beta_p(\dots), \alpha_x, \beta_x, d_p) \cdot d_p$$

LMU KLINIKUM

C⁶⁺ (p⁺)

z = 8.0 cm

100

energy in MeV/u

150

Differences between p⁺ and C⁶⁺ Fragmentation

p+ **C**⁶⁺ E = 200 MeV/u E = 200 MeV z = 24.0 cm 10 10 100 dose in Gy С Α dose in Gy rel. number of particles per energy in 1/(MeV u'¹) 01 $_{\rm b}$ 01 $_{\rm b}$ 50 rel. number of protons per energy in 1/(MeV) 10⁻² ' 0 0 10 20 30 40 0 5 10 15 20 depth in cm depth in cm 10⁰ В 10⁻³ rel. particle fraction 10 н 10⁻⁴ He 10 10⁻⁸ 200 100 150 250 300 0 50 0 5 10 20 0 50 15 depth in cm energy in MeV

Courtesy of K. Parodi and G. Dedes, LMU Munich

Kamp et al., IJROBP 2015

250

200

He

C6+

Influence of fragmentation on RBE and RWD

- Accounting for fragmentation reduces RBE
- It is crucial: underestimation of needed dose of up to 30% without fragmentation
- General: RBE is a main factor for carbon ion RT

Kamp et al., IJROBP 2015

Uncertainties in RBE modeling

$$\alpha_{p}(\alpha_{x},\beta_{x},Z_{ion},LET_{ion},cell)$$

$$\beta_{p}(\alpha_{x},\beta_{x},Z_{ion},LET_{ion},cell)$$

Many factors:

. . .

- Determination of radiosensitivity parameters
- Validity of the LQ-model
- Extrapolation from in-vitro experiments to the human body
- Uncertainties in the biological models and their parameters / assumptions
- Every model is wrong, some are usefull*

*George Box, https://en.wikipedia.org/wiki/All_models_are_wrong

MUKLINIKUM

C6+

Example: Impact of uncertainties

Change one biological modeling (Σ / Σ_X) parameter by **10%** $RWD = RBE \cdot d$

 Multi-field biological optimization with RMF model for carbon ion RT

$$\beta = (\alpha_X / \beta_X) = 2 \text{ Gy}$$

5% deviation in *RWD*

Uncertainty and sensitivity analysis Teaser

- All RBE model predictions are uncertain
- Uncertainty and sensitivity analysis mostly done by changing one parameter at a time in the model.

- Variance-based uncertainty and sensitivity analysis to combine "physical" uncertainties in
 - range
 - setup (isocenter shifts)
- with uncertainties in RBE prediction originating from:
 - α_X and β_X (or (α_X / β_X))
 - RBE model input parameters

Variance-based uncertainty analysis Add uncertainites to treatment planning

- Execute RWD calculation many times (10³-10⁴) with randomly and simultaneously changed:
 - Isocenter
 - Range
 - Biological model parameters
- Requirements:
 - Fast RBE model execution given changed input*
 - Fast RWD calculation

 $^{*}\text{e.g.}$ We denberg et al. Acta Oncol, 2013 , or RMF model as described in Kamp et al. PMB, 2017

Hofmaier et al., conditionally accepted Med. Phys.

Variance-based sensitivity analysis Break down resulting uncertainties into impact of the input uncertainties

Missing sectors of pie chart: Interactions between different uncertainties

3

Preliminary results, courtesy of Jan Hofmaier, LMU Munich

Literature

C⁶⁺

- RBE for carbon ion therapy
 - Scholz et al., Radiat Environ Biophys 1997; 36:59-66
 - Grün et al., PMB 2012;57:7261-7274
 - Frese et al., *IJROBP* 2012;83(1):442-450
 - Kamp et al., IJROBP 2015;93(3):557-568
 - Inaniwa et al., *PMB* 2010;55 6721–37
 - Mein et al., IJROBP 2020. in press
 - Karger et al, PMB 2018; 63 01TR02
- RBE for proton therapy
 - See other talks in this session

)+

- C⁶⁺/p⁺
 Variance-based uncertainty and sensitivity analysis
 - Saltelli et al., Comput Phys Commun 2010;181(2):259-270.
 - Kamp et al., Med Phys 2018;46(2):437-447
 - Kamp et al., Phys Medica 2014;30(5):583-587
 - Hofmaier et al., cond. accepted Med Phys

Contact: florian.kamp@med.uni-muenchen.de

