Anatomical Adaptive Radiation Therapy

Geoff Hugo, Ph.D.

Washington University Radiation Oncology gdhugo@wustl.edu @gdhugo

Washington University in St. Louis SCHOOL OF MEDICINE

National Comprehensive NCCN Cancer Network*

Disclosures

- Employee: Washington University
- Research Grants: AHA, NIH, Siemens, Varian Medical Systems, ViewRay
- Speaking / consulting: Varian

Anatomical Variability - Sources

- Musculoskeletal (articulation / swallowing)
- Motion (breathing, peristalsis, heartbeat)
- Disease progression / response
- Primary
- Secondary (pleural effusion)
- Other immobilization / applicator

Collapsed Lung

Multifactorial - breathing and response

Anatomical Variability - Considerations

- Rigid / non-rigid
- Time scale
- Pattern
- Magnitude
- Affected tissues

Tumor Growth / Response

Collapsed Lung

Multifactorial - breathing and response

Anatomical Variability during RT

Geometric variability => target volume size

Geometric variability => uncertainty in normal tissue dose

Higher precision => less toxicity, better local control

Better estimates of delivered dose => better outcome models

Adaptive Radiation Therapy

Adapt the treatment plan to changes during therapy

Enabling Technologies for Adaptive RT

Onboard Imaging

Replanning

Decision Making

Timescales of Adaptive RT

- Offline
- Online
- Realtime

Timescales of Adaptive RT - Offline

Treatments continue while adaptive process performed outside of treatment space

Green Sem Rad Onc 2019

Timescales of Adaptive RT - Online

Adaptive process performed while patient is on the treatment table, immediately prior to treatment

Green Sem Rad Onc 2019

Timescales of Adaptive RT - Realtime

Adaptive process performed while patient is on the treatment table, continually during treatment

Keall Radioth Oncol 2018

Timescales of Adaptive RT

Offline

- Economical
- Manages slow or singular changes
- Can use diagnostic images
- Can't manage daily change
- Typically more manual

Online

- Semi-automated toolset
- Typically single integrated system
- Most variabilities
- Risk of anatomical changes during / after replan
- Additional QA burden
- Requires intrafraction
 motion management

Realtime

- Most responsive to high frequency changes
- Most direct, no need to model / manage other sources
- Requires most automation
- Less commercial availability
- Highest QA burden

Clinical Trials – Adaptive RT

Bladder Cancer – Hybrid Online/Offline – Meijer Radiother Oncol 2012

NSCLC – Tvilum Acta Oncol 2015

Cervical Cancer / IGABT EMBRACE-II

Seppenwoolde Radiother Oncol 2019

Phase I Trial - Stereotactic MR-Guided Online Adaptive RT (SMART)

- 20 patients with unresectable primary or oligometastatic disease of the liver (n = 10) & non-liver (n=10) abdomen planned for SBRT
- Prescription: 50Gy/5fx with SMART approach
- Isotoxicity approach, with dose escalation (or de-escalation) based on hard OAR constraints
- Breath hold or gating managed by realtime cine MR

Henke Radiother Oncol 2018, Rudra Cancer Medicine 2019

Phase I Trial - Stereotactic MR-Guided Online Adaptive RT (SMART)

- 83% (79/95) fx adapted—all patients had ≥ 1
- Primarily (70/95 fx) to protect OARs after interfx motion
- 100% of OAR violations resolved with adaptive planning
- No Grade 3+ toxicity at median 11.8 mo f/u. Expected up to 30% based on prior reports accounting for motion (Hoyer, et al. 2005)

Realtime Adaptive – TROG 15.01 SPARK A Prostae CV D9%

- 48 prostate ca patients
- 88% patients > 1 correction
- CTV D98% within 5% with realtime IGRT
- No grade 3 toxicity
- Multi-vendor!

Keall P et al, IJROBP, 2020

Adaptive RT – Needs Assessment

- Trials, trials trials!
- Automation and QA of automation
- Robust workflow models
- Training programs
- Tools for managing complex, multifactorial variability

 Anatomical variability can be managed in part by adaptive radiation therapy.

 Different types of adaptive RT for different time scales of variability.

• Work remains to produce clinical evidence, develop workflow and robustness, and manage complex changes.

