The Universi of Manchest MANCHESTER





# **Imaging Biomarker Roadmap for Cancer**

john.waterton@manchester.ac.uk

AAPM/COMP 2020-07-14



### Funding Support, Disclosures, and Conflict of Interest statement

FUNDING. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007- 2013) and EFPIA companies' in kind contribution. Part of the work was also performed during the author's previous employment with AstraZeneca, a for-profit company engaged in the discovery, development, manufacturing and marketing of proprietary therapeutics.

DISCLOSURES & CONFLICT OF INTEREST. John Waterton holds stock in Quantitative Imaging Ltd and receives compensation from Bioxydyn Ltd, a for-profit company engaged in the discovery, development, provision and marketing of imaging biomarkers.

#### Speaker Presentations - Funding Support, Disclosures, and Conflict of Interest Statement

Speakers ARE REQUIRED to include a slide in their PowerPoint presentation disclosing any unding support, disclosures, and conflicts of interest. The conflict may pertain to themselves, a me ber of their team, or an immediate family member.

# **BEST resource (2016)**

#### **Biomarker**:

A defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic interventions.

Molecular, histologic, radiographic or physiologic characteristics are types of biomarkers.

A biomarker is not an assessment of how an individual feels, functions, or survives.

Categories of biomarkers include:

- susceptibility/risk biomarker
- diagnostic biomarker
- monitoring biomarker
- prognostic biomarker
- predictive biomarker
- pharmacodynamic/response biomarker
- safety biomarker



Development of 1999 workshop (Atkinson et al 2001)

## Six key cancer imaging modalities





| Metrology definition                     | Colloquial definition | Examples |
|------------------------------------------|-----------------------|----------|
| Ordered<br>categorical<br>(incl. binary) | How ugly?             |          |
| Extensive                                | How big?              |          |
| Intensive                                | How hot?              |          |

| Metrology definition                     | Colloquial definition | Examples                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ordered<br>categorical<br>(incl. binary) | How ugly?             | <ul> <li>TNM stage PET SPECT vis XR/CT MR us</li> <li>OR PET SPECT Vis XR/CT MR us</li> <li>ACR BIRADS breast morphology xr</li> <li><sup>99m</sup>Tc-etarfolatide FR+ SPECT</li> <li>Radiomic signature of heterogeneity CT</li> </ul>                                                                                             |
| Extensive                                | How big?              | <ul> <li>LVEF SPECT MR us</li> <li>Spleen volume CT MR</li> <li>circumferential resection margin in rectal cancer MR</li> </ul>                                                                                                                                                                                                     |
| Intensive                                | How hot?              | <ul> <li>SUV<sub>max</sub> <sup>111</sup>In-pentetreotide SPECT</li> <li>SUV<sub>max</sub> <sup>18</sup>F-fludeoxyglucose PET</li> <li>Aprepitant receptor occupancy % PET</li> <li>Δ<i>K</i><sup>trans</sup> gadoterate MR</li> <li>DCE-US AUC us</li> <li>MRI ADC MR</li> <li><sup>13</sup>C-pyruvate k<sub>p</sub> MR</li> </ul> |

# Problem statement: imaging biomarkers in cancer

- Not a new idea predates molecular biology!
  - Tumour size: 1940s/50s
  - Tumor T<sub>1</sub> (1971) led to invention of MRI
  - Exemplified in FDA/NIH biomarker workshop (1999)
- Today used routinely all BEST categories
  - Cancer drug development
  - Regulatory approval
  - Routine oncologic practice
- Many investigational imaging biomarkers in cancer

• Disappointing rate of translation – why?





(v))

| Imaging biomarker:<br>Scanner in hospital Radiology Dept                   | Biospecimen biomarker:<br>In vitro diagnostic device             |
|----------------------------------------------------------------------------|------------------------------------------------------------------|
| Different scanners from different vendors installed in different hospitals | Identical IVDDs                                                  |
| Scanners not designed, maintained or approved for measuring biomarkers     | IVDDs designed, maintained and approved for specific measurement |
| Main job role not quantitation                                             | Trained, dedicated staff                                         |
| Quality depends mainly on events at the moment of scanning                 | Quality depends mainly on the central lab                        |
| Picture quality drives innovation:<br>unpredictable effect on quantitation | Stable platform due to regulatory approval                       |
| Seldom defined analytes                                                    | Defined molecular entity via                                     |

### Typical biospecimen biomarker validation roadmap





Nature Reviews Clinical Oncology **14**:169-186 (2017) http://dx.doi.org/10.1038/nrclinonc.2016.162

#### Includes supplementary files

- Problem statement
- Examples all modalities and contexts of use
- Definitions
- Detailed roadmap
- Recommendations

CONSENSUS STATEMENT

OPEN

# Imaging biomarker roadmap for cancer studies

James P. B. O'Connor<sup>1</sup>, Eric O. Aboaque<sup>2</sup>, Judith E. Adams<sup>3</sup>, Hugo J. W. L. Aerts<sup>4</sup>, Sally F. Barrinaton<sup>5</sup>, Ambros J. Beer<sup>6</sup>, Ronald Boellaard<sup>7</sup>, Sarah E. Bohndiek<sup>8</sup>, Michael Brady<sup>9</sup>, Gina Brown<sup>10</sup>, David L. Buckley<sup>11</sup>, Thomas L. Chenevert<sup>12</sup>, <sup>†</sup>Laurence P. Clarke<sup>13</sup>, Sandra Collette<sup>14</sup>, Gary J. Cook<sup>5</sup>, Nandita M. deSouza<sup>15</sup>, John C. Dickson<sup>16</sup>, Caroline Dive<sup>17</sup>, Jeffrey L. Evelhoch<sup>18</sup>, Corinne Faivre-Finn<sup>19</sup>, Ferdia A. Gallagher<sup>8</sup>, Fiona J. Gilbert<sup>8</sup>, Robert J. Gillies<sup>20</sup>, Vicky Goh<sup>5</sup>, John R. Griffiths<sup>8</sup>, Ashley M. Groves<sup>16</sup>, Steve Halligan<sup>16</sup>, Adrian L. Harris<sup>9</sup>, David J. Hawkes<sup>16</sup>, Otto S. Hoekstra<sup>21</sup>, Erich P. Huang<sup>22</sup>, Brian F. Hutton<sup>16</sup>, Edward F. Jackson<sup>23</sup>, Gordon C. Jauson<sup>24</sup>, Andrew Jones<sup>25</sup>, Dow-Mu Koh<sup>15</sup>, Denis Lacombe<sup>26</sup>, Philippe Lambin<sup>27</sup>, Nathalie Lassau<sup>28</sup>, Martin O. Leach<sup>15</sup>, Ting-Yim Lee<sup>29</sup>, Edward L. Leen<sup>2</sup>, Jason S. Lewis<sup>30</sup>, Yan Liu<sup>26</sup>, Mark F. Lythgoe<sup>31</sup>, Prakash Manoharan<sup>1</sup>, Ross J. Maxwell<sup>32</sup>, Kenneth A. Miles<sup>16</sup>, Bruno Morgan<sup>33</sup>, Steve Morris<sup>34</sup>, Tony Ng<sup>5</sup>, Anwar R. Padhani<sup>35</sup>, Geoff J. M. Parker<sup>1</sup>, Mike Partridge<sup>9</sup>, Arvind P. Pathak<sup>36</sup>, Andrew C. Peet<sup>37</sup>, Shonit Punwani<sup>16</sup>, Andrew R. Reynolds<sup>38</sup>, Simon P. Robinson<sup>15</sup>, Lalitha K. Shankar<sup>13</sup>, Ricky A. Sharma<sup>16</sup>, Dmitry Soloviev<sup>8</sup>, Sigrid Stroobants<sup>39</sup>, Daniel C. Sullivan<sup>40</sup>, Stuart A. Taylor<sup>16</sup>, Paul S. Tofts<sup>41</sup>, Gillian M. Tozer<sup>42</sup>, Marcel van Herk<sup>19</sup>, Simon Walker-Samuel<sup>31</sup> James Wason<sup>43</sup>, Kaye J. Williams<sup>1</sup>, Paul Workman<sup>44</sup>, Thomas E. Yankeelov<sup>45</sup>, Kevin M. Brindle<sup>8</sup>, Lisa M. McShane<sup>22</sup>, Alan Jackson<sup>1</sup> and John C. Waterton<sup>1</sup>

Abstract | Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used

#### Figure 2 The imaging biomarker roadmap



Nature Reviews | Clinical Oncology

O'Connor, J. P. B. et al. (2016) Imaging biomarker roadmap for cancer studies Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2016.162



Figure 1 Overview of the imaging biomarker roadmap



Nature Reviews | Clinical Oncology



O'Connor, J. P. B. et al. (2016) Imaging biomarker roadmap for cancer studies Nat. Rev. Clin. Oncol. doi:10.1038/nrclinonc.2016.162

|                                                                   | Imaging (biosignal) bm                                                       | Typical biospecimen bm                                   |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|
| Technical validation,<br>clinical validation,<br>clinical utility | Iterative in parallel                                                        | Mainly in series                                         |
| Biological and clinical validity                                  | Biological validation<br>platform of evidence<br>e.g. Bradford Hill criteria | Definitive clinical outcome<br>studies e.g. Kaplan Meier |

)

- 1. Align grants and publications to roadmap
- 2. Exhaustively document methodology in publications
- 3-7. Technical (assay validation)

Consensus, accreditation, repeatability, reproducibility, analysis methodology

8-11. Biological and clinical validation

Platform of evidence (Bradford Hill criteria)

Imaging-pathology correlation (human and aniumal)

Data sharing

Publication bias

- 12. Design of outcome studies
- 13-14. Cost effectiveness and clinical utility Imaging agents pricing; QALY advantage



## The problem of poorly aligned incentives

Standardisation not considered innovative by funding agencies nor career-enhancing for academics



Novel biomarker can't be used without reliable accurate measurement.

Not a good use of vendors' resources to provide accurate measurement unless demand from customers (radiologists) Can't acquire evidence base unless scanners routinely generate accurate measurements

Radiologists won't demand accurate measurements without evidence from multicentre trials to show impact of measurement on health outcomes.



## Innovative approaches to incentivisation

Incentivisation through public-private partnerships, professional bodies

• Standardising FDG-PET, FLT-PET, MRI-ADC, MRI-K<sup>trans</sup>, MRI-DIILD etc



FINIH Foundation for the National Institutes of Health

Academics innovate, businesses standardise



## questions



