

Learning Objective To recognize the strengths and limitations of existing normal tissue imaging biomarkers (IBs) used in the routine care of cancer patients and emerging IBs at various stages of development.

OMPREHENSIVE ANCER CENTER

•

Rañatim O

2

Outline Outline Introduction Introduction IBs used in routine clinical care IBs used in routine clinical care Heart: Left ventricular ejection fraction Heart: Left ventricular ejection fraction . IBs used as clinical research tools IBs used as clinical research tools Brain: choline-creatine ratio Brain: choline-creatine ratio • Lung: ventilation or perfusion Lung: ventilation or perfusion . Pelvis: ¹⁸F-FDG uptake in bone marrow Pelvis: ¹⁸F-FDG uptake in bone marrow Limitations, challenges and opportunities . Limitations, challenges and opportunities UCDAVIS Summary CDAVIS Summary . . COMPREHENSIVE OMPREHENSIVE 3 4

LVEF: Inter-Modality Variability Variability in Ejection Fraction Measured By Echocardiography, Gated Single-Photon Emission Computed Tomography, and Cardiac Magnetic Resonance in Patients With Coronary Artery Disease and Left Ventricular Dysfunction likka, MD; Lilin She, PhD; Thomas A. Holly, MD; Grace Lin, MD; Padmini Varadarajan, MD; Ramdas G. Pai, MD; Robert O. ost, MD; Julio A. Panza, MD; Daniel S. Berman, MD; David L. Prior, MBBS; PhD; Federico M. Asch, MD; Salvador Borge-Nichald: PhD: Naralis-Lamie, MD; PhD; Pattero Devoteron-Nichem, DD; Kerry Li, Lee, PhD; Fri, C. Hubaraze, MD; International multisite study for 2,032 patients There was substantial inter-modality variability in LVEF . between echocardiography, SPECT and MRI

Only 43-54% of LVEF measurements agreed within 5% UCDAVIS . COMPREHENSIVE Pellikka et al. (JAMA Network Open 2018)

13

14

15

Cho/Cr: Sensitivity/Specificity

Sealable (195.05 100 (204-100) 100 (204-100) 847 (204-100) 847 (204-100) 100

European Journal of Radiology

16

CDAVIS OMPREHENSIVE

18

Zhang et al. (Eur J Radiol 2014)

Lung Ventilation or Perfusion

- Can be used to guide functional avoidance RT and to monitor the changes in lung function during/ after RT
- Modalities
 - Ventilation: Biphasic/4D CT, dual-
 - energy CT, SPECT, PET, MRI Perfusion: Dual-energy CT,
 - SPECT, PET, MRI

UCDAVIS

COMPREHENSIVE

19

Ventilation vs. Pulmonary Toxicity

	· · · · · · · · · · · · · · · · · · ·	Dose metric	P value	AUC
Evaluating the Toxicity Reduction With	International Journal of Radiation Oncology	fV5 Gy	<.01	0.693
Computed Tomographic Ventilation Functional Avoidance Radiation Therapy	hiology • physics	V5 Gy	.05	0.637
Austin M. Faught, PhD, * Yuya Miyasaka, BS, ¹ Noriyuki Kadoya, PhD.		fV10 Gy	<.01	0.718
Richard Castillo, PhD, ¹ Edward Castillo, PhD, ¹ Yevgeniy Vinogradskiy, PhD, [*] and Tokihiro Yamamoto, PhD ¹		V10 Gy	.13	0.614
		fV20 Gy	<.01	0.707
 A 70-patient study quantified predictiv of dose-volume and 4D CT ventilation 		V20 Gy	.36	0.545
dose-function metrics for grade ≥2 pn	eumonitis	fV30 Gy	<.01	0.682
Dose-function metrics had greater AU	C values	V30 Gy	.75	0.508
CDAVIS		fMLD	<.01	0.723
OMPREHENSIVE ANCER CENTER Radiatio Roader	7)	MLD	.12	0.584

20

21

	Institution	Endpoint	# of participants	Allocation	Modality	ClinicalTrials.gov ID				
	London Health Sciences Centre	QOL	27	Randomized	MR ventilation	NCT02002052				
	University of California Davis	Grade ≥3 adverse events	34	Single arm	4D CT ventilation	NCT02308709				
	University of Colorado	Grade ≥3 pneumonitis	87	Single arm	4D CT ventilation	NCT02528942				
	University of Washington	Overall survival	60	Single arm	SPECT perfusion	NCT02773238				
	University of Wisconsin	Ventilation changes	120	Randomized	4D CT ventilation	NCT02843568				
c,	COMPREHINSIVE CANCER CENTER Ladates Charter									

