# Imaging Technologies for Stereotactic Ablative Radiotherapy (SABR) of Cardiac Ventricular Tachycardia

Minsong Cao, PhD, FAAPM

Department of Radiation Oncology University of California, Los Angeles







### Background

- Ventricular Tachycardia (VT) is a major cause of sudden cardiac death
- Invasive catheter ablation has become a primary therapy, but with a moderate success rate for patients with structural heart disease (SHD)
- Early preliminary studies have shown promising outcome of Stereotactic Ablative Radiotherapy (SABR) as non-invasive treatment option for refractory VT





### **Reentrant Ventricular Tachycardia**



Ablation requires accurate substrate mapping





### **RF Catheter Ablation**

- Point-by-point ablation (invasive and time-consuming)
- Common failures:
  - Inadequate heating at desired target
  - Arrhythmia substrate location is inaccessible
  - Missing the critical central isthmus







Mahida *et al.* Circulation V136. 2017 Spartalis M *et al.* World J of Cardiology, V10,2018



#### Catheter ablation strategies



Pandozi et al. Clin. Cardiology,4, 2019



#### Radiotherapy ablation



Radiation ablation: possible to ablate entire scar or multiple scars simultaneously

- Accurate target localization is still critical
- Too small missing the isthmus
- Too large normal tissue toxicity
- Respiration and cardiac motion



### Arrhythmia target mapping technologies

- Electrophysiological based:
  - 12-lead ECG
  - Cardiac Electroanatomic Mapping (EAM)
  - Electrocardiographic Imaging (ECGI)
- Non-invasive cardiac imaging Structure or functional
  - Cardiac MRI (CMR)
  - Multi-detector Cardiac CT (MDCT) or Angiograph
  - Nuclear imaging (SPECT/PET)







- 12-lead ECG provides location info of the exit site of the circuit (~1cm away from isthmus)
- Remains as a guide to further mapping, rather than pinpointing the actual site



Miller *et al*. Card Electrophysiol Clin 9 (2017)



## **Electrophysiological Mapping**

- Catheter-mounted intra-cardiac electrodes
  - Unipolar or Bipolar
  - Various mapping techniques
    - Activation mapping
    - Entrainment mapping
    - Pacing mapping
    - Substrate mapping



Lada et al. Card Electrophysiol Clin 11 (2019)

Area of low amplitude voltage is associated with surviving myocardia tissues





## **Electroanatomic Mapping (EAM)**

- Combine the electrical information from catheter-mounted electrode and 3D spatial information
- Real-time guidance for ablation with minimal use of fluoroscopy
- Large uncertainties due to:
  - Inconsistencies in catheter contact
  - Sparse sampling and extrapolation
- Invasive, time consuming
- Data not compatible to RT planning



Spartalis M et al. World J of Cardiology, V10,2018





### **Electrocardiographic imaging (ECGI)**



#### Vest of 250 ECG electrodes over patient's torso

- Body surface potential map generated to derive substrate exit and entrance site
- Projected on patient's CT
- Non-invasive mapping
- Not widely available, requires active stimulation of VT

#### Rudy. Circ Res 112 (5), 2013





# Cardiac MR Imaging (CMR)

- Late gadolinium enhancement (LGE) CMR: clinical gold standard for characterization of myocardial fibrotic tissue
- Well validated in histopathologic studies and correlated with electrophysiological mapping







Zeppenfeld et al. JACC Clin Electrophysiology v4. 2018 Njeim et al. JACC Cardiovascular Imaging. v9 2016



### LGE-CMR

- Safety concerns in patients with ICD and pacemaker implants (tissue heating, device malfunction)
- Device-induced image artifacts: void or hyperintensity





Courtesy of Dr. Peng Hu, UCLA



### Wideband LGE-CMR

Radiology Improved Late Gadolinium Device artifact reduction for magnetic resonance Enhancement MR Imaging for imaging of patients with implantable cardioverter-defibrillators and ventricular Patients with Implanted Cardiac tachycardia: Late gadolinium enhancement Devices<sup>1</sup> correlation with electroanatomic mapping Shams Rashid, PhD To propose and test a modified wideband late gadolinium Purpose: Stanislas Rapacchi, PhD Steven M, Stevens MD\*, Roderick Tung MD, FHRS\*, Shams Rashid PhD<sup>+</sup>, Jean Gima NP\*, Shelly Cote NP\*, enhancement (LGE) magnetic resonance (MR) imaging Marmar Vaseghi, MD, MS technique to overcome hyperintensity image artifacts Geraldine Pavez NP\*, Sarah Khan MD<sup>†</sup>, Daniel B, Ennis PhD<sup>†</sup>, I, Paul Finn MD<sup>†</sup>, Noel Boyle MD, PhD, FHRS\*, Roderick Tuna, MD caused by implanted cardiac devices. Kalyanam Shivkumar MD, PhD, FHRS<sup>本</sup><sup>†</sup>, Peng Hu PhD<sup>本</sup><sup>†</sup>名四 Kalyanam Shivkumar, MD. PhD J. Paul Finn, MD Materials and Written informed conse Peng Hu, PhD ipants, and the HIPAA-o proved by the instituti **adiology Cardiac Radiology:** Centenary Review<sup>1</sup> Albert de Roos, MD During the past century, cardiac imaging technologies Charles B. Higgins, MD have revolutionized the diagnosis and treatment of ac-

• Hyperintensity artifacts can be eliminated by a wide-bandwidth RF inversion pulse, enabling diagnostic scar imaging ...





Heart Rhythm Volume 11, Issue 2, February 2014, Pages 289-298

### Wideband LGE-CMR





Rashid, Hu et al. Radiology v270, 2014



### Wideband LGE vs EAM





Stevens, Hu et al. Heart Rhythm, v11, 2014



### Wideband LGE for SABR target localization









## **Cardiac CT**

- High spatial resolution (<1mm)
- Lower contrast-to-noise ratio
- Imaging characteristics for scar:
  - Wall thinning, adipose metaplasia, Hypoperfusion
- Delineate detailed cardiac anatomy
  - Coronary arteries, valve apparatus, phrenic nerves...



Esposito et al. JACC Cardiovascular Imaging. v9 2016





# **Nuclear Imaging (SPECT, PET)**

- Provide complementary functional information to EAM defined scar
- Mapping of metabolically active surviving tissue or perfusion defects
- Do not provide sufficient anatomic information
- Intrinsic low spatial resolution



Zei et al. Curr Cardiol Rep 19, 2017





| Modality                   | Mechanism                                                                   | Advantage                                                                           | Disadvantage                                                                                                                   |
|----------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| EAM<br>(EP)                | catheter-mounted contact<br>electrode + 3D spatial info                     | real-time electrophysiological info                                                 | invasive; sparse sampling and<br>extrapolation;<br>data not compatible with RT planning                                        |
| ECGI<br>(EP)               | EGM map derived from high<br>density ECG jacket                             | non-invasive ECG mapping;<br>3D combined with CT                                    | only mapping exit/entrance site;<br>not widely available;<br>reliability and accuracy to be proved                             |
| LGE-CMR<br>(Structural)    | contrast demarcates<br>extracellular space as<br>surrogate of dense fiber   | high CNR allowing 3D scar<br>characterization (size, border<br>zone, heterogeneity) | MR safety concerns & Image artifact;<br>non-axial images;<br>low resolution in slice thickness;<br>renal function for contrast |
| Cardiac CT<br>(Structural) | imaging of wall thinning,<br>hypoperfusion                                  | axial images with detailed<br>cardiac anatomy;<br>high spatial resolution           | low CNR and sensitivity;<br>renal function for contrast;<br>imaging radiation exposure                                         |
| PET/SPECT<br>(Functional)  | mapping of metabolically<br>active surviving tissue or<br>perfusion defects | axial images;<br>distinguish NICM etiologies<br>with inflammation                   | no anatomy info;<br>low spatial resolution (PET)                                                                               |





### **Multi-modality target delineation**







| Imaging Modality | Author                          | Publication | Registration | Registration | Landmarks (If Applicable)                      | Registration |
|------------------|---------------------------------|-------------|--------------|--------------|------------------------------------------------|--------------|
|                  |                                 | Year        | Error (mm)   | Method       |                                                | Mode         |
| MRI              | Codreanu et al. <sup>18</sup>   | 2008        | N/R          | LM           | Aorta, LV apex, MA                             | offline      |
|                  | Desjardins et al.33             | 2009        | 4.3          | LM + SURF    | Aorta, LV apex, MA                             | offline      |
|                  | Bogun et al.17                  | 2009        | 4.8          | LM + SURF    | Aorta, LV apex, MA                             | online       |
|                  | llg et al. <sup>29</sup>        | 2010        | 3.5          | LM + SURF    | N/R                                            | online       |
|                  | Andreu et al. <sup>16</sup>     | 2011        | 3.4          | LM + SURF    | Aorta, LV apex, MA, RV                         | online       |
|                  | Wijnmaalen et al. <sup>22</sup> | 2011        | 3.8          | LM + SURF    | Left main                                      | online       |
|                  | Dickfeld et al. <sup>19</sup>   | 2011        | 3.9          | VA           | NA                                             | online       |
|                  | Perez-David et al.20            | 2011        | N/R          | LM           | LV apex and MA                                 | offline      |
|                  | Tao et al.32                    | 2012        | 4.3          | SURF         | NA                                             | offline      |
|                  | Gupta et al. <sup>28</sup>      | 2012        | 3.8          | LM + SURF    | Aorta, LV apex, MA                             | online       |
|                  | Piers et al. <sup>21</sup>      | 2012        | 3.2          | LM + VA      | Left main                                      | online       |
|                  | Spears et al. <sup>34</sup>     | 2012        | 3.6          | LM + SURF    | Aorta, LV apex, MA or His                      | offline      |
|                  | Cochet et al.*12                | 2013        | N/R          | LM + SURF    | Aorta, CS, left atrium, MA                     | online       |
|                  | Sasaki et al.30                 | 2012        | 2.8          | LM + SURF    | Aorta, LV apex, MA, RV septal insertions       | offline      |
| MDCT             | Desjardins et al. <sup>51</sup> | 2010        | 3.0          | LM + SURF    | Epicardial apex, most lateral tricuspid and MA | offline      |
|                  | Tian et al.14                   | 2010        | 3.3          | VA + SURF    | NA                                             | online       |
|                  | v Huls v Taxis et al.1          | 5 2013      | 2.8          | LM + SURF    | Left main                                      | online       |
|                  | Piers et al.21                  | 2012        | 2.0          | LM + SURF    | Left main                                      | online       |
|                  | Komatsu et al.13                | 2013        | N/R          | LM + SURF    | CS, aortic root, LV apex and MA                | online       |
| PET/CT           | Fahmy et al.27                  | 2008        | 5.1          | LM + SURF    | Coronary ostia, cusps, apex                    | online**     |
|                  | Dickfeld et al.60               | 2008        | 3.7          | VA           | NA                                             | online       |
|                  | Tian et al.61                   | 2009        | 4.3          | VA + SURF    | NA                                             | online       |
| SPECT            | Tian et al.64                   | 2012        | 4.4          | LM + SURF    | MA                                             | offline      |

#### 2-5 mm registration error between EAM and non-invasive imaging



Piers et al. Arrhythmia & Electrophysiology Review 2013



#### **MUSIC** integration platform

• MUSIC: MUltimodality platform for Specific Imaging in Cardiology



https://team.inria.fr/epione/en/software/music/





### **Motion management**

- Complex respiration and cardiac motions
- Cardiac motion primarily as twist contraction with reduced magnitude in patients with chronic cardiomyopathy
- Respiration motion: 4DCT + IVT or Dynamic tracking/gating of fiducials
- Assessment of cardiac motion and compensation strategies remain challenges to be addressed





Roujol et al. PLos One, 8(11) 2013 Stohr et al. Am J Physiol Heart Circ Physiol, 311(3), 2016 Bertini et al. JACC Cardiovacular Imaging 2(12), 2009



| Publication                           | Substrate Assessment Modalities                                                                                        | Treatment<br>Platform | Dose<br>Delivered     | Procedure<br>Length | Motion Compensation                                                                                                                                                           |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loo et al. 201541                     | Echocardiogram, PET, 12-lead ECG                                                                                       | CyberKnife            | 25 Gy/<br>1 fraction  | 90 min              | Dynamic tracking (Synchrony) with<br>temporary pacing wire as fiducial for<br>respiratory. Fluoroscopy during transient<br>breath holds for cardiac.                          |
| Neuwirth et al.<br>201949             | Diagnostic CT, EAM studies                                                                                             | CyberKnife            | 25 Gy/<br>1 fraction  | 114 min             | Dynamic tracking (Synchrony) with LV electrode as fiducial. No additional safety margin.                                                                                      |
| Zei et al. 201763                     | Cardiac CT, CMR, PET, 12-lead ECG, prior<br>EAM studies                                                                | CyberKnife            | 25 Gy/<br>1 fraction  | Not reported        | Dynamic tracking (Synchrony) with fiducial tracking as available.                                                                                                             |
| Cuculich et al.<br>20174              | SPECT, CMR, cardiac CT,<br>echocardiogram, ECGi (Cardioinsight<br>Noninvasive 3D Mapping System), prior<br>EAM studies | TrueBeam              | 25 Gy/<br>1 fraction  | 11–18 min           | 4D respiratory-gated CT to determine<br>target volume plus cardiac and<br>respiratory motion, plus safety margin<br>of 5 mm.                                                  |
| Jumeau et al. 201845                  | Planning CT, CMR, prior EAM studies                                                                                    | CyberKnife            | 25 Gy/<br>1 fraction  | 45 min              | Dynamic tracking (Synchrony) with RV<br>ICD lead as fiducial. No additional safety<br>margin.                                                                                 |
| Robinson et al.<br>2019 <sup>46</sup> | SPECT, CMR, cardiac CT,<br>echocardiogram, ECGi (Cardioinsight<br>Noninvasive 3D Mapping System), prior<br>EAM studies | TrueBeam              | 25 Gy/<br>1 fraction  | 15.3 min            | 4D respiratory-gated CT to determine<br>target volume plus cardiac and<br>respiratory motion, plus safety margin<br>of 5 mm.                                                  |
| Haskova et al.<br>2018⁴7              | Planning CT, intracardiac echo, prior<br>EAM                                                                           | CyberKnife            | 25 Gy/<br>1 fraction  | Not reported        | Not reported.                                                                                                                                                                 |
| Zeng et al. 201948                    | Planning CT, 12-lead echocardiogram,<br>prior EAM                                                                      | CyberKnife            | 24 Gy/<br>3 fractions | Not reported        | Dynamic tracking (Synchrony) with<br>fluoroscopically implanted fiducial<br>(pacemaker lead) for respiratory,<br>fluoroscopy for cardiac.                                     |
| Neuwirth et al.<br>2019 <sup>49</sup> | Planning CT, ECG-gated CT, prior<br>endocardial +/- epicardial EAM                                                     | CyberKnife            | 25 Gy/<br>1 fraction  | 68 min              | ECG-gated CT for cardiac motion.<br>Dynamic tracking (Synchrony) with<br>existing ICD leads as surrogate fiducials<br>for respiratory motion. No additional<br>safety margin. |



David Geffen School of Medicine Wei C et al. Arrhythmia & Electrophysiology Review 2019;8(4)



# Summary

- SABR has been shown to be a promising non-invasive treatment for refractory cardiac VT
- Success of cardiac SABR relies on accurate target localization and treatment delivery
  - Non-invasive imaging for substrate characterization
  - Multi-modality image integration and registration
  - Motion assessment and compensation





### Acknowledgement

### **Radiation Oncology:**

- Robert Chin, MD. PhD
- Yingli Yang, PhD

### Radiology:

• Peng Hu, PhD

### Cardiac Electrophysiology:

- Jason Bradfield, MD
- Justin Hayase, MD





