Leveraging advanced technologies for improved cardiac sparing

Carri Glide-Hurst, PhD, DABR, FAAPM

Director of Translational Research, Radiation Oncology Henry Ford Cancer Institute →

Director, Radiation Oncology Physics, Department of Human Oncology, University of Wisconsin Madison

all for you

Disclosures

- Research funding provided by:
 - NIH R01CA204189 (PI: Glide-Hurst)
 - Philips Healthcare
- Collaborations with Modus Medical Devices, ViewRay (unrelated to the current work)
- Many of these slides are compliments of the recently minted Dr. Eric Morris (HFCI/WSU—>UCLA)

How is the heart like bowling?

Clinical Motivation: Cardiac Dose 5 20

- Radiation dose to the heart may be fatal¹
- Hodgkin's lymphoma²
 - Myocardial infarction
- Esophageal³
 - Heart failure
- Advanced stage lung⁴ and breast¹
 - Coronary artery disease: Left > Right

Deep-inspiration Breath Hold (DIBH)

- Surface monitoring (RPM, AlignRT, bellows, SDX)
- Spirometry (ABC)

Rong et al, Plos One, 2014

Limitations in Heart Dose/Volume Metrics

- RTOG 0617: 74 Gy (2 Gy fx) w/ concurrent chemo was not better than 60 Gy
 - Might be **potentially harmful (!!!)**
- RTOG 0617 heart dose-volume thresholds for treatment planning:

Heart V33% < 60 Gy; V66% < 45 Gy; V100% < 40 Gy

- Lowest priority among all normal tissues
- QUANTEC endpoint: <10% of heart receives >25 Gy for long-term cardiac mortality endpoints

Lancet Oncol. 2015 Feb; 16(2): 187–199.

Whole-heart Dose Metrics are not Sensitive

Morris et al., Under

Revision JACMP. 2020

Clinical Motivation: Cardiac Substructure Doses

- RTOG 0617 sub-analysis suggests dose to substructures were more strongly associated with overall survival than standard of care whole-heart dose estimates¹
- Left atrium/ventricle (LA/LV) & left anterior descending artery (LADA) have prognostic inferences, such as: Risk of cardiomyopathy, CAD, ischemic diseases, etc.²
- Recent dose constraints to substructures have been introduced³

Structure	Constraint	Value	
Whole Heart	Mean Heart Dose	< 2.5 Gy	
LV	LADA-V40	< 1%	
	Mean LV Dose	< 3 Gy	
LADA	LV-V5	< 17%	
	LADA maximum dose	< 10 Gy	RY FOR CER INST. U

1. Thor et al., IJROBP, 2018; 2. Vivekanandan et al., IJROBP, 2017; 3. Van den Bogaard et al., ASCO, 2017

all fo

Substructure Atlas Generation & Application in MIM

- 20 left-sided breast cancer patients, cardiac T2-weighted MRI at 3T and TPCTs
- 15 patients in the atlas, 5 test subjects
- Compared (1) single-atlas, (2) majority vote (MV), and (3) simultaneous truth & performance level estimation (STAPLE)
- Atlas subject selected via mutual information, then contours deformably registered
- Multi-atlas matches iterated (1, 3, 5, 10, and 15)
 REGISTERING
 DEFORMATION

POST-PROCESSING

Morris et al, IJROP , 2019

- Paired MRI/CT data for 25 patients were placed into separate image channels to train network
- Novel Deep Learning Contributions¹: Multi-channel (MRI/CT) inputs, deep supervisi 3D adaptation on original 2D U-Net², and hyperparameter optimization

1. Morris et al, MedPhys, 2020 2. Ronneberger et al., MICCAI, 2018

କ୍ଷ

Results: Worst Case

<u>2D Axial</u>

Results: Comparison to Multi-Atlas Method

Morris et al, MedPhys, 2020

Cardiac Substructure Motion During Respiration

Dose Variations During Respiration

 Note small variations for the whole heart (red), mean dose < 0.5 Gy

(not sensitive!!)

 Superior vena cava mean dose > 5 Gy difference

<u>PO-GeP-M-96</u> Miller, C. et al.

Substructure Spared Planning, IMRT

- Exceptional sparing to the LADA
- New beam arrangements possible with 4/16 patients

Results: Patient DVH with Beam Modification

with 12/16 plans having <100 MU change

Morris et al., Under Revision JACMP, 2020

Substructure spared planning: VMAT, Protons

VMAT 2-4 Arcs

CARDIAC SPARED VMAT 2-4 Arcs

PROTONS 2-3 beams IMPT

60 Gy 45 Gy 30 Gy

Cardiac Displacement Visualized in MR-guided RT

Clinical Impact & Conclusions

- Radiation therapy dose to the heart is avoidable and modifiable: we can (and should!) do better
- Becomes of even greater importance with dose escalation, hypofractionation, etc.
- Applying advanced technologies will help us keep our patients safer from acute and late cardiac toxicities

