

2nd Talk: Learning Objectives

1.Understand the evolution of PSI radionuclides and grasp their dosimetric differences.

2.Learn various techniques used for PSI in different anatomical sites.

c) capsule standardization: equipment compatibility

- stranded ¹²⁵I seeds sutured to lobectomy surgical margin
- · required high surgical skill
- subject to high/low dose regions

Lee et al. Ann Thorac Surg 75: 237-243 (2003).

Chen, et al. IJROBP 44: 1057-1063 (1999).

PSI for Breast Cancer

- CT-based pre-implant treatment plan performed for PSI (¹⁰³Pd) ordering 2 weeks prior to OR
- seroma cavity with PTV margin is delineated under US, needle entry paths determined to guide subsequent surgery
- OR setup concerns for arm position, muscle tension, template position, and fiducial needle position located via US
- post-implant CT dosimetry performed same day as implant

Crook et al. Brachytherapy 18: 510-520 (2019).

PSI for Brain Cancer

- historically implanted few ¹²⁵I seeds during tumor resection
- many single institutional studies, promising alternative to WBRT
- Wernicke and colleagues researched ¹³¹Cs in the past decade
- stranded seeds and devices are now being used

Schwarz et al. Rad Oncol 7: 30 (2012). Chitti et al. J. Contemporary Brachytherapy 12: 67-83 (2020).

PSI for Brain Cancer

TABLE III. Summary of dose conversion for fast growing tumors D(Au, I, Pd) is the reference dose for a given isotope (Au-198, I-125, Pd-103), and D(Cs-Au, I, Pd) is the Cs-131 dose converted from the corresponding isotope dose.

D(Au, I, Pd) (Gy)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160
D(Cs-Au) (Gy)	22	31	39	46	53	59	64	68	72	76	78	80		_		
D(Cs-I) (Gy)				7	14	20	28	36	44	53	63	73	85	97	110	123
D(Cs-Pd) (Gy)		19	32	45	59	73	88	103	119	135	152	169	187			

TABLE IV. Summary of dose conversion for slow growing tumors D(Au, I, Pd) is the reference dose for a given isotope (Au-198, I-125, Pd-103), and D(Cs-Au, I, Pd) is the Cs-131 dose converted from the corresponding isotope dose.

D(Au, I, Pd) (Gy)	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160
D(Cs-Au) (Gy)	11	19	28	38	47	58	68	80	91	103	115	128		_		
D(Cs-I) (Gy)		13	22	31	41	51	61	71	82	93	103	114	126	137	149	162
D(Cs-Pd) (Gy)		25	38	51	64	77	90	103	116	129	141	154	166			

Luo et al. Med Phys 41: 024101 (2014).

Wernicke et al. IJROBP 98: 1059-1068 (2017).

Mahase et al. Brachytherapy 18: 258-270 (2019).

Ashamalla et al. Brachytherapy 1: 161-166 (2002). Pham et al. J. Contemporary Brachytherapy 7: 445-452 (2015).

Conclusions

- PSI has been used successfully for many years for a variety of anatomic sites
- surgical techniques are more streamlined, using CT/MRI/US for pre-implant planning
- newer radionuclides and source assemblies can improve dose distributions

Related Reading: Lung

- Chen et al. Intraoperative ¹²⁵I brachytherapy for high-risk stage I non-small cell lung carcinoma. IJROBP 44: 1057-1063 (1999).
- Lee et al. Limited resection for non-small cell lung cancer: Observed local control with implantation of I-125 brachytherapy seeds. Ann Thorac Surg 75: 237-243 (2003).
- Johnson et al. Dosimetric and technical aspects of intraoperative I-125 brachytherapy for stage I non-small cell lung cancer. Phys Med Biol 52:1237-1245 (2007).
- Yang & Rivard. Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities. Med Phys 38: 5857-5862 (2011).
- Sutherland et al. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy. Phys Med Biol 58: 7061-7080 (2013).
- Fernando et al. Impact of brachytherapy on local recurrence rates after sublobar resection: results from ACOSOG Z4032 (Alliance), a phase III randomized trial for high-risk operable non-small-cell lung cancer. J Clin Oncol 32: 2456-2462 (2014).
- Fernando et al. Analysis of longitudinal quality-of-life data in high-risk operable patients with lung cancer: Results from the ACOSOG Z4032 (Alliance) multicenter randomized trial. J Thorac Cardiovasc Surg 149: 718-725; discussion 725-726 (2015).
- Parashar et al. Analysis of stereotactic radiation vs. wedge resection vs. wedge resection plus cesium-131 brachytherapy in early stage lung cancer. Brachytherapy 14: 648-654 (2015).

Related Reading: Breast

- Pignol et al. First report of a permanent breast ¹⁰³Pd seed implant as adjuvant radiation treatment for early-stage breast cancer. IJROBP 64: 176-181 (2006).
- Pignol et al. Tolerance and acceptance results of a palladium-103 permanent breast seed implant Phase I/II study. IJROBP 73: 1482-1488 (2009).
- Hilts et al. Skin dose in breast brachytherapy: Defining a robust metric. Brachytherapy 14: 970-978 (2015).
- Watt et al. Dosimetric variations in permanent breast seed implant due to patient arm position. Brachytherapy 14: 979-985 (2015).
- Pignol et al. Report on the clinical outcomes of permanent breast seed implant for early-stage breast cancers. IJROBP 93: 614-621 (2015).
- Hilts et al. Deformable image registration for defining the postimplant seroma in permanent breast seed implant brachytherapy. Brachytherapy 14: 409-418 (2015).
- Morton et al. Incorporating three-dimensional ultrasound into permanent breast seed implant brachytherapy treatment planning. Brachytherapy 16: 167-173 (2017). Watt et al. Appropriate timing for postimplant imaging in permanent breast seed implant: Results from a serial CT study. Brachytherapy 17: 609-614 (2018).
- Crook et al. Permanent breast seed implant for partial breast radiotherapy after partial mastectomy for favorable breast cancer: Technique, results, and applications to various seroma presentations. Brachytherapy 18: 510-520 (2019).

Related Reading: Brain

- McDermott et al. Interstitial brachytherapy for malignant brain tumors. Semin Surg Oncol 14: 79-87 (1998).
- Huang et al. Surgical resection and permanent iodine-125 brachytherapy for brain metastases. J Neurooncol 91: 83-93 (2009).
- Ruge et al. Stereotactic ¹²⁵Iodine brachytherapy for treatment of singular brain metastases: Closing a gap? Neurosurgery 68: 1209-1218 (2011).
- Schwarz et al. lodine-125 brachytherapy for brain tumours a review. Rad Oncol 7: 30 (2012).
- Luo P et al. Determination of prescription dose for Cs-131 permanent implants using the BED formalism including resensitization correction. Med Phys 41: 1-8 (2014).
- Pham et al. Neurocognitive function and quality of life in patients with newly diagnosed brain metastasis after treatment with intra-operative cesium-131 brachytherapy: A prospective trial. J Neurooncol 127: 63-71 (2016).
- Wernicke et al. Clinical outcomes of large brain metastases treated with neurosurgical resection and intraoperative cesium-131 brachytherapy: Results of a prospective trial. IJROBP 98: 1059-1068 (2017).
- Mahase et al. Intraoperative brachytherapy for resected brain metastases. Brachytherapy 18: 258-270 (2019).
- Chitti et al. The role of brachytherapy in the management of brain metastases: a systematic review. J Contemporary Brachytherapy 12: 67-83 (2020).

Related Reading: Head & Neck

- Martinez et al. ¹²⁵I implants as an adjuvant to surgery and external beam radiotherapy in the management of locally advanced head and neck cancer. Cancer 51: 973–979 (1983).
- Park et al. lodine-125 seed implantation as an adjunct to surgery in advanced recurrent squamous cell cancer of the head and neck. Laryngoscope 101: 405-410 (1991).
- Syed et al. Brachytherapy for primary and recurrent nasopharyngeal carcinoma: 20 years' experience at Long Beach Memorial. IJROBP 47: 1311-1321 (2000).
- Ashamalla et al. Radioactive gold grain implants in recurrent and locally advanced head-and-neck cancers. Brachytherapy 1: 161-166 (2002).
- Kupferman et al. The role of interstitial brachytherapy with salvage surgery for the management of recurrent head and neck cancers. Cancer 109: 2052-2057 (2007).
- Jiang et al. CT-guided iodine-125 seed permanent implantation for recurrent head and neck cancers. Radiat Oncol 2010; 5: 68 (2010).
- Parashar et al. Cesium-131 permanent seed brachytherapy: Dosimetric evaluation and radiation exposure to surgeons, radiation oncologists, and staff. Brachytherapy 10: 508-513 (2011).
- Zhu et al. An investigation of ¹²⁵I seed permanent implantation for recurrent carcinoma in the head and neck after surgery and external beam radiotherapy. World J Surg Oncol 11: 60 (2013).
- Pham et al. Cesium-131 brachytherapy in high risk and recurrent head and neck cancers: First report of long-term outcomes. J Contemporary Brachytherapy 7: 445-452 (2015).
- Jiang et al. Side effects of CT-guided implantation of ¹²⁵I seeds for recurrent malignant tumors of the head and neck assisted by 3D printing non co-planar template. Radiat Oncol 13:18 (2018).