Advances in permanent source implantation for LDR brachytherapy of various anatomical sites

Mark J. Rivard, Ph.D., FAAPM, FABS
Professor of Radiation Oncology
Rhode Island Hospital / Brown University
Providence, RI

2nd Talk: Learning Objectives

1. Understand the evolution of PSI radionuclides and grasp their dosimetric differences.

2. Learn various techniques used for PSI in different anatomical sites.
Evolution of PSI Radionuclides

• sources initially developed using radiochemical separation: 226Ra and 222Rn

• later with nuclear activation (atomic age) and radiochemistry:
 191Ir(n,γ)192Ir, 197Au(n,γ)198Au
 124Xe(n,γ)125Xe==>125I, 103Rh(p,n)103Pd, 130Ba(n,γ)131Ba==>131Cs
 electron capture
 radiochemistry

• development trend has been for:
 a) low energy: safe for personnel and public, easily shieldable
 b) shorter half-life: increased BED, combination with EBRT
 c) capsule standardization: equipment compatibility

PSI General Dosimetry

• low-E PSI sources exhibit higher dose falloff and larger dose gradients than 192Ir

• low-E PSI dosimetry is more sensitive to positioning variations (initially and during decay)

• these factors influence various anatomic sites differently

PSI for Lung Cancer

• stranded ^{125}I seeds sutured to lobectomy surgical margin
• required high surgical skill
• subject to high/low dose regions

PSI for Lung Cancer

• ^{125}I seeds in vicryl mesh sutured to lobectomy surgical margin
• requires less surgical skill
• less subject to high/low dose regions

PSI for Breast Cancer

• CT-based pre-implant treatment plan performed for PSI (\(^{103}\)Pd) ordering 2 weeks prior to OR

• seroma cavity with PTV margin is delineated under US, needle entry paths determined to guide subsequent surgery

• OR setup concerns for arm position, muscle tension, template position, and fiducial needle position located via US

• post-implant CT dosimetry performed same day as implant

PSI for Breast Cancer

PSI for Brain Cancer

• historically implanted few 125I seeds during tumor resection
• many single institutional studies, promising alternative to WBRT
• Wernicke and colleagues researched 131Cs in the past decade
• stranded seeds and devices are now being used

Schwarz et al. Rad Oncol 7: 30 (2012).
TABLE III. Summary of dose conversion for fast growing tumors. D(Au, I, Pd) is the reference dose for a given isotope (Au-198, I-125, Pd-103), and D(Cs-Au, I, Pd) is the Cs-131 dose converted from the corresponding isotope dose.

<table>
<thead>
<tr>
<th>D(Au, I, Pd) (Gy)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(Cs-Au) (Gy)</td>
<td>22</td>
<td>31</td>
<td>39</td>
<td>46</td>
<td>53</td>
<td>59</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(Cs-I) (Gy)</td>
<td>7</td>
<td>14</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>53</td>
<td>63</td>
<td>73</td>
<td>85</td>
<td></td>
<td>97</td>
<td>110</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(Cs-Pd) (Gy)</td>
<td>19</td>
<td>32</td>
<td>45</td>
<td>59</td>
<td>73</td>
<td>88</td>
<td>103</td>
<td>119</td>
<td>135</td>
<td>152</td>
<td>169</td>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV. Summary of dose conversion for slow growing tumors. D(Au, I, Pd) is the reference dose for a given isotope (Au-198, I-125, Pd-103), and D(Cs-Au, I, Pd) is the Cs-131 dose converted from the corresponding isotope dose.

<table>
<thead>
<tr>
<th>D(Au, I, Pd) (Gy)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(Cs-Au) (Gy)</td>
<td>11</td>
<td>19</td>
<td>28</td>
<td>38</td>
<td>47</td>
<td>58</td>
<td>68</td>
<td>80</td>
<td>91</td>
<td>103</td>
<td>115</td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(Cs-I) (Gy)</td>
<td>13</td>
<td>22</td>
<td>31</td>
<td>41</td>
<td>51</td>
<td>61</td>
<td>71</td>
<td>82</td>
<td>93</td>
<td>103</td>
<td>114</td>
<td>126</td>
<td>137</td>
<td>149</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>D(Cs-Pd) (Gy)</td>
<td>25</td>
<td>38</td>
<td>51</td>
<td>64</td>
<td>77</td>
<td>90</td>
<td>103</td>
<td>116</td>
<td>129</td>
<td>141</td>
<td>154</td>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PSI for Head & Neck Cancer

PSI for Head & Neck Cancer

Conclusions

- PSI has been used successfully for many years for a variety of anatomic sites
- surgical techniques are more streamlined, using CT/MRI/US for pre-implant planning
- newer radionuclides and source assemblies can improve dose distributions

Related Reading: Lung

Related Reading: Breast

Related Reading: Brain

Related Reading: Head & Neck