

Wultimodal Imaging: detection & diagnosis US imaging has been the primary modality for prostate biopsy followed by pathological findings/diagnosis mpMRI (T2w, DWI, DCE, MRS) has become more and more popular over the last decades for the diagnosis of prostate cancer due to anatomical and functional imaging ability T2w MRI is mainly used for prostate boundary detection while the diffusion-weighted imaging is the modality choice for computer-aided prostate cancer detection Can we avoid invasive biopsy and rely on digital biopsy? Tiw MRI Taw MRI<

InterviewIDE onlyIDE Note:Disage characteristics \overline{n} \overline{n} (Range) \overline{n} \overline{n} (Range)Stage (NCN)15628510.226Tic165528540.226Characteristics \overline{n} \overline{n} \overline{n} \overline{n} Tab2828261426Characteristics \overline{n} \overline{n} \overline{n} \overline{n} Characteristic \overline{n} \overline{n} \overline{n} \overline{n} Median \overline{n} \overline{n} \overline{n} \overline{n} Maximal line to homother app 2.5 $(15-30)$ 3.0 $(12,0,0)$ \overline{n} Dickler line to homother app 2.5 $(15-30)$ 3.0 $(12,0,0)$ \overline{n} Median Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile \overline{n} Mean IPSS scene during follow-up by grDickler line to homother app 2.5 $(12,0,0)$ \overline{n} \overline{n} \overline{n} Mean IPSS scene during to CTCAE v.4.03. \overline{n} \overline{n} \overline{n} \overline{n} Toxicity \overline{Grade} \overline{LDR} $DOst$ P value $\overline{Acute}(3)$ 1 $58,1$ $51,9$ <			osimetric i	parameters by	/ aroup.				35		
Dissue characteristics n $I(Earge)$ n $I(Earge)$ Stage (XCK) 1 5 5 14 0.26 T2 5 5 0 0 0 Cleaner's score 6 7 5 5 0 0 6 7 52 28 5 0 0 7 (1 + 3) 4 4 0 0 0 0 Median 6.3 (12-10.1) 6.1 (4.1-11.0) 0.53 0.039 10 81 74 38 69 0.0424 0.044 210 29 26 17.3 0.333 0.011 0.011 Valuation lancabe loopy ratio (3) 20 (10-40) 0.011 0.011 0.011 0.011 Median (3.15.3.0) 3.0 (10-40) 0.011 0.011 0.011 0.011 0.011 NCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quaritle and Third Quaritle 1			LDR on	v		DR + Boost		p value		т	
$\text{Tick introduction of the set of the se$	Disease chara	acteristics	n	% (Rang	(e) n	1	% (Range)		25		
$\frac{Ta}{12b}$ T									8 20	A .	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									2 20	I	
Tx 5 0 0 Generation core (3 C) (1 + 3) 5 0 0 Median (10) 57 52 28 51 0.359 Mind PA (4 + 3) 4 0 0 Median 6.3 (12-10.1) 6.1 (4-11.0) 0.435 Median 6.3 (12-10.1) 6.1 (4-11.0) 0.435 Normal level methods to pay rate (3) 20 (10-45) 20 0.435 Median 6.3 (12-10.1) 6.1 (4-17.33) 0.435 Nocch - National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile Totak Totaking level methods (10-40) Totaking level methods (10-40) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0,226</td> <td>2 15</td> <td>T</td> <td></td>								0,226	2 15	T	
Cleaner's some 7 (4 - 4) 5 2 28 5 1 0.359 7 (4 - 4) 4 4 7 0 0 Media 7 6 0 Media 7 6 0 Media 7 6 0 Media 7 6 0 Media 7 7 0 0 Media 7 7 0 0 Notice Figure 7 1 0.424 0 0 0 0 0 0 Media 7 31 0.333 Notice Figure 7 1 1.53.0 2.0 0.011 Media 0									10		-
$\frac{6}{7 (1 + 3)} = \frac{57}{4} = \frac{52}{4} = \frac{28}{4} = \frac{51}{4} = 0$ $\frac{7}{7 (1 + 3)} = \frac{4}{4} = \frac{4}{4} = 0$ $\frac{7}{7 (1 + 3)} = \frac{4}{4} = \frac{4}{4} = 0$ $\frac{7}{4} = \frac{1}{4} = \frac{1}$			5	2	0		0			T T T T	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		e	67	63		0		0.350	5	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								0,359			
$\frac{1}{10} + \frac{1}{10} $										10.1 (2 12.9 (2) NO	- 10 - 10 - 10 - 10 ^{- 1}
10 81 24 38 69 0.424 210 29 25 27 31 0.85 Pacifies home the rays 21 (14.33) 22 (17.33) 0.331 Mode home the rays 25 (1.5-3.0) 1.0 (1.0-60) 0.011 NCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile Mean IPSS score during follow-up by gr MCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile 0.011 Mccitity Grade LDR only LDR+Boost P value: Acute (%) 1 58,1 51,9 0.118		el							nent of	of ant atto atto	with with anth with
10 81 24 38 69 0.424 210 29 26 17 31 0.83 Patitus biology ratio (1) 21 (14.33) 27 31 0.83 Operating the biology ratio (1) 23 (14.33) 23 (17.33) 0.33 Median 2.5 (1.5.30) 1.0 (1.0.40) 0.011 Time Mean IPSS score during follow-up by gr (1.5.30) NCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile Toxicities by group according to CTCAE v.4.03. Toxicity Grade LDR only LDR+Boost P value: Acute (%) 1 58,1 51,9 0,118 Optimized State Specific Antigen, Range = First Quartile and Third Quartile			6.3	(3.2-10	(1) 6	1	(4.1 - 11.0)		eath 1m	2 mo 6 mo 9 mo 2 mo 4 m	no show a mo o mo.
Painter biopy rate (1) 21 (14-38) 28 (17-33) 0.333 Time Mathail mission biopy rate (1) 20 (10-40) 0.461 0.011 0.011 Operative hormotherapy 8 7 12 22 0.011 0.011 Median (15-3.0) 1.0 (10-40) 0.461 0.011 0.011 NCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile 0.011 0.011 0.011 0.011 MCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile 0.011 0.011 0.011 0.011 Toxicity Grade LDR only LDR + Boost P value: 0.011 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0,424</td> <td>oreio</td> <td>3 0 9 V V</td> <td>3° 8° 6°</td>								0,424	oreio	3 0 9 V V	3° 8° 6°
Maximal maskins biopy ratio (1) 20 (10-40) 20 (10-40) 0.461 Maximal maskins biopy ratio (1) 2.5 7 1.0 1.2 0.011 Media 2.5 7 1.0 2.0 0.0461 NCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile 0.011 IPSS = International Prostate Symptom Sc Genitourinary toxicities by group according to CTCAE v.4.03. Toxicity Grade LDR only LDR+Boost P value: Acute (3) 1 58,1 51,9 0,118											
Generaturity hormschizagy 8 7 12 22 0011 2.5 (1.5-3.0) 3.0 (1.0-6.0) 0.101 NCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile 0.101 Genitourinary toxicities by group according to CTCAE v.4.03. Toxicity Grade LDR only LDR + Boost P value: Acute (%) 1 58,1 51,9 0,118										Time	
Genitourinary toxicities by group according to CTCAE v.4.03. Image: CTCAE v.4.03. Image: CTCAE v.4.03. Toxicity Grade LDR only LDR+Boost P value: Acute (%) 1 58,1 51,9 0,118											
NCCN = National Comprehensive Cancer Network, PSA = Prostate-Specific Antigen, Range = First Quartile and Third Quartile Genitourinary toxicities by group according to CTCAE v.4.03. Toxicity Grade LDR only LDR + Boost P value: Acute (%) 1 58,1 51,9 0,118 2 33,3 46,2		e normotnerapy							IF	PSS = International Pros	state Symptom Score
Acute (%) 1 58,1 51,9 0,118 DFS 2 33,3 46,2 ***										+ B + B + B + B + B + B + B + B + B + B	- had and and and a state
2 33,3 46,2 ***		-	-		-						-
		Toxicity	Grade	LDR only	LDR + Boost	P value:			0.6		
		Toxicity	Grade 1	LDR only 58,1	LDR + Boost 51,9	P value:			0.6- DFS		
		Toxicity	Grade 1 2	LDR only 58,1 33,3	LDR + Boost 51,9 46,2	P value:			0.6- DFS		
Late (%) 1 50.5 60.4 0.076		Toxicity	Grade 1	LDR only 58,1	LDR + Boost 51,9	P value:			0.6- DFS 0.4-		
		Toxicity Acute (%)	Grade 1 2 ≥3	LDR only 58,1 33,3 0	LDR + Boost 51,9 46,2 0	<i>P</i> value: 0,118			0.5- DF5 0.4-	+ DIL boost	
		Toxicity Acute (%)	Grade 1 2 ≥3 1	LDR only 58,1 33,3 0 50,5	LDR + Boost 51,9 46,2 0 60,4	<i>P</i> value: 0,118			05- DFS 04- 02-		
		Toxicity Acute (%)	Grade 1 2 ≥3 1 2	LDR only 58,1 33,3 0 50,5 36,6	LDR + Boost 51,9 46,2 0 60,4 37,7	<i>P</i> value: 0,118			06- DFS 02- →→ LDR +		
Catheterism (n) 3 2 1,00		Toxicity Acute (%)	Grade 1 2 ≥3 1	LDR only 58,1 33,3 0 50,5	LDR + Boost 51,9 46,2 0 60,4	<i>P</i> value: 0,118			0.6 DFS 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0		
CTCAE = Common Terminology Criteria for Adverse Events		Toxicity Acute (%) Late (%)	Grade 1 2 ≥3 1 2	LDR only 58,1 33,3 0 50,5 36,6 0	LDR + Boost 51,9 46,2 0 60,4 37,7 0,2	<i>P</i> value: 0,118 0,076			06- DPS 04- 02- 02- 02- 02- 02- 02- 02- 02- 02- 02	niy sa na na	
97 Years after treatment		Toxicity Acute (%) Late (%) Catheterism (n)	Grade 1 ≥3 1 2 ≥3	LDR only 58,1 33,3 0 50,5 36,6 0 3	LDR + Boost 51,9 46,2 0 60,4 37,7 0,2 2	<i>P</i> value: 0,118 0,076			0.6 DFS 0.4 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0	only 108 19 18 11 19 19 19 19 25 5.0	2 2 2 1 75 NB
Seven-year biochemical failure-free surviva		Toxicity Acute (%) Late (%) Catheterism (n)	Grade 1 ≥3 1 2 ≥3	LDR only 58,1 33,3 0 50,5 36,6 0 3	LDR + Boost 51,9 46,2 0 60,4 37,7 0,2 2	<i>P</i> value: 0,118 0,076			06- DPS 04- 02- 02- 02- 02- 02- 02- 02- 02- 02- 02	only 108 19 18 11 19 19 19 19 25 5.0	2 2 2 1 75 NB

Multimodal Imaging: dosimetric planning Segmentation/ contouring – TRUS, CT, MRI 1) TRUS – suitable for real-time, no radiation, inexpensive low-contrast between the prostate and surrounding tissues, and the inter-exam variability of the prostate characteristics, inherent artifacts (speckle, shadowing, and attenuation) 2) CT – prostate contouring is challenging 3) MRI - good contrast compared to the TRUS and CT Auto segmentation on MRI is based on automatically extracted features; used methods are CNN, deep learning for feature extraction. Multimodal Imaging - promising results have been obtained by incorporating information of prostate gland shape from MRI with US or with CT.

	aluate	d with	MCret	/MBD	C and	TG43s	im/TG	43 for 6	513 pat	ients a	and 3 ex	kample	e case
		Tar	get			Urethra			Rectum			Bladder	
	D ₉₀ (Gy)	D ₉₉ (Gy)	V ₁₀₀ (%)	V ₂₀₀ (%)	D5 (Gy)	D ₃₀ (Gy)	V ₁₀₀ (%)	D _{0.1cm3} (Gy)	D _{2cm3} (Gy)	D ₃₀ (Gy)	D _{0.1cm3} (Gy)	D5 (Gy)	D ₃₀ (Gy)
Overall results from	n 613 pa	tients											
MCref	144.1	94.6	88.2	30.0	271.4	222.2	83.4	176.3	97.5	42.8	221.8	120.1	54.9
TG43sim	152.6	101.3	90.4	33.4	283.4	232.8	86.0	185.6	102.8	44.2	219.2	119.7	56.0
$\%\Delta_{\rm av}$	-5.9	-7.2	-2.6	-11.5	-4.4	-4.7	-5.7	-5.2	-5.4	-3.2	1.3	0.4	-2.1
$\%\Delta_{ m std}$	1.6	2.5	1.7	3.2	1.8	1.9	6.5	1.8	1.7	5.3	1.8	1.5	2.0
IQR(MCref)	34.9	32.2	9.8	14.7	93.2	56.6	19.8	73.6	34.8	16.7	99.8	38.6	22.0
IQR(TG43sim)	36.6	33.8	9.2	16.9	97.5	58.6	17.7	76.0	36.8	18.4	98.9	38.5	22.1
Example case 1: 1.													
MCref	110.4	72.4	73.3	19.7	230.8	182.6	79.1	121.4	64.6	25.1	224.6	97.9	34.9
TG43sim	137.4	98.4	87.6	22.7	267.3	223.8	93.2	152.5	81.8	31.8	229.2	99.7	38.7
%Δ	-24.4	-35.9	-19.4	-15.5	-15.8	-22.6	-17.8	-25.6	-26.6	-26.6	-2.1	-1.8	-10.9
Example case 2: 0.													
MCref	84.9	54.5	61.7	13.6	190.3	168.7	59.8	86.9	54.4	21.7	86.2	45.2	19.3
TG43sim	92.9	60.5	68.4	15.2	203.7	183.3	68.4	94.1	58.6	23.5	87.0	44.4	20.6
%Δ	-9.5	-11.0	-10.8	-12.1	-7.1	-8.6	-14.4	-8.3	-7.6	-8.5	-0.9	1.9	-7.0
Example case 3: no				1202000									
MCref	114.2	73.5	79.1	20.5	193.6	162.0	59.0	99.4	62.4	27.2	247.0	141.1	70.4
TG43sim	120.9	78.4	82.0	22.6	201.2	167.3	62.0	105.0	66.7	29.5	254.6	141.3	71.9
$\%\Delta$	-5.9	-6.8	-3.6	-10.1	-4.0	-3.3	-5.2	-5.6	-6.9	-8.4	-3.1	-0.1	-2.1

	ations	of Curr	rent Pla	nning	System	าร
anatomic site	photon energy	absorbed dose	attenuation	shielding	scattering	beta/kerma dose
www.etete	high					
prostate	low	XXX	XXX	XXX		
h na a st	high				XXX	
breast	low	XXX	XXX	XXX		
	high			XXX		
GYN	low	XXX	XXX			
- 1.4	high			XXX	XXX	
skin	low	XXX		XXX	XXX	
	high				XXX	XXX
lung	low	XXX	XXX		XXX	
	high				XXX	
penis	low	XXX			XXX	
	high			XXX	XXX	XXX
eye	low	XXX	XXX	XXX	XXX	

Multimodal Imaging: post-Op dosimetry

Imaging modality-

- CT only commonly used
- US only better prostate contour
- MRI only still challenging
- CT & MRI good, but expensive
- CT & US take advantage from both
- US & C-arm real time/dynamic

Post-Op plans on CT post-implantation and on US images at the start of the procedure.

Difference	Mean (%)	σ (%)	p-value
D90 _{CT} -D90 _{pre-US}	6.4	21.6	0.1097
D100 _{CT} -D100 _{pre-US}	-3.75	19.33	0.3052
V100 _{CT} -V100 _{pre-US}	-0.17	9.01	0.9186
V150 _{CT} -V150 _{pre-US}	7.29	18.03	0.0379

Ali, Spencer et al., Phys. Med. Biol. (2009) 54:5595-561

<section-header><section-header><section-header><section-header><complex-block><complex-block><text><text><text>

Used TRUS and C-arm fluoroscopy								Prosta	ite dose	
fluoroscopy-to-TRUS registration		Reconstruction error (mm),		Registration	error (mm),			me	trics	
		mean \pm Std		mean	± Std		1	D ₉₀	V	100
Seed segmentation: 1% false	Patient	Overall	х	у	z	Overall	US/FL (%)	MR/CT (%)	US/FL (%)	MR/CT
negative rate and 2% false positive	1	0.8 ± 0.3	0.4 ± 0.5	0.4 ± 0.4	1.2 ± 0.9	1.6 ± 0.8	129	123	99.0	99.5
A	2	0.4 ± 0.4	0.3 ± 0.2	0.2 ± 0.3	0.7 ± 1.0	0.9 ± 0.9	125	115	94.8	95.1
 Ability to detect cold spots 	3	0.3 ± 0.2	0.4 ± 0.4	0.9 ± 0.8	0.9 ± 0.9	1.6 ± 1.0	114	115	93.0	95.1
	4	0.4 ± 0.2	0.3 ± 0.3	0.7 ± 0.3	0.8 ± 0.7	1.2 ± 0.6	153	130	98.9	98.0
Piducial	5	0.6 ± 0.4	0.3 ± 0.3	0.5 ± 0.4	0.5 ± 0.3	0.9 ± 0.4	131	126	97.1	98.6
	6	0.6 ± 0.5	0.6 ± 0.9	0.8 ± 0.7	0.7 ± 0.3	1.4 ± 0.9				
	7	0.6 ± 0.3	0.3 ± 0.4	0.4 ± 0.3	0.9 ± 0.7	1.1 ± 0.7	132	100	98.3	90.1
	8	0.5 ± 0.3	0.5 ± 0.4	0.5 ± 0.4	0.6 ± 0.3	1.1 ± 0.4	136	134	99.8	99.0
a second s	9	1.2 ± 1.3	0.4 ± 0.3	0.5 ± 0.4	0.9 ± 0.6	1.2 ± 0.4	125	118	97.4	97.6
Cam		0.5 ± 0.5	0.2 ± 0.2	0.5 ± 0.5	0.9 ± 0.7	1.2 ± 0.7	115	115	97.0	99.0
Fluoroscopic	11	0.4 ± 0.3	0.4 ± 0.3	0.5 ± 0.5	1.1 ± 0.7	1.4 ± 0.6	123	125	94.3	98.5
Reconstruction	12	0.4 ± 0.2 0.3 ± 0.2	0.4 ± 0.4 0.4 ± 0.5	0.5 ± 0.4 0.7 ± 0.6	0.8 ± 0.6 0.8 ± 0.7	1.2 ± 0.5 1.4 ± 0.5	154	146	99.4 99.3	99.8 97.3
Place and a second seco	13	0.3 ± 0.2 0.3 ± 0.2	0.4 ± 0.5 0.3 ± 0.3	0.7 ± 0.6 0.5 ± 0.2	0.8 ± 0.7 0.8 ± 0.7	1.4 ± 0.5 1.1 ± 0.6	131	118	99.3	97.3
BU THUS Poly	14	0.3 ± 0.2 0.9 ± 0.6	0.3 ± 0.3 0.2 ± 0.2	0.5 ± 0.2 0.6 ± 0.5	0.8 ± 0.7 1.0 ± 0.7	1.1 ± 0.6 1.3 ± 0.6	108	109	93.2	93.2
	15	0.9 ± 0.6 0.3 ± 0.4	0.2 ± 0.2 0.2 + 0.2	0.6 ± 0.3 0.4 ± 0.3	1.0 ± 0.7 0.8 ± 0.7	1.3 ± 0.6 1.1 ± 0.6	143	146	99.5	93.8
	17	0.3 ± 0.4 0.4 ± 0.4	0.2 ± 0.2 0.2 ± 0.1	0.4 ± 0.3 0.4 ± 0.3	0.8 ± 0.7 0.9 ± 0.8	1.1 ± 0.8 1.2 ± 0.7	140	140	99.9	98.6
	18	0.5 ± 0.5	0.4 ± 0.5	0.7 ± 0.6	0.9 ± 0.8 0.8 ± 0.5	1.4 ± 0.5	169	146	98.6	99.2
	19	0.4 ± 0.3	0.2 ± 0.1	0.4 ± 0.3	0.5 ± 0.3	0.8 ± 0.3	130	132	97.8	98.7
Ultrasound Volume Registration & Dosimetry	20	0.4 ± 0.3	0.5 ± 0.5	0.2 ± 0.2	0.9 ± 0.5	1.2 ± 0.5	117	124	93.6	98.5
Workflow of our image-guidance system for dynamic dose calculation. At least three fluoroscopic images	21	0.4 ± 0.3	0.3 ± 0.2	0.8 ± 0.6	1.0 ± 0.6	1.4 ± 0.6	137	124	99.3	97.6
are taken of the implanted seeds and the fiducial above the patient's abdomen (the dark round object in	22	0.2 ± 0.2	0.1 ± 0.1	0.7 ± 0.8	1.0 ± 0.5	1.3 ± 0.8	132	139	97.0	99.5
the images is a Foley catheter balloon optionally filled with contrast to identify the bladder). An ultrasound	23	0.5 ± 0.7	0.3 ± 0.2	0.9 ± 0.5	0.8 ± 0.6	1.3 ± 0.7	165	144	96.8	99.3
volume of the seed-filled prostate is acquired. Both image sets are processed to calculate dose.	24	0.4 ± 0.3	0.4 ± 0.4	0.5 ± 0.6	1.3 ± 1.0	1.7 ± 0.8	115	113	95.3	96.1
	25	0.3 ± 0.7	0.4 ± 0.4	0.5 ± 0.4	1.4 ± 1.3	1.7 ± 1.2				
(a) (b) prostata	26	0.3 ± 0.2	0.2 ± 0.2	0.6 ± 0.6	0.9 ± 0.6	1.2 ± 0.5	114	110	96.8	96.9
(U) 100% institue level	27	0.3 ± 0.4	0.5 ± 0.4	0.6 ± 0.4	0.7 ± 0.5	1.1 ± 0.5	125	107	95.4	92.0
	28	0.3 ± 0.2	0.1 ± 0.0	0.4 ± 0.3	0.9 ± 0.6	1.0 ± 0.6	127	118	98.5	95.3
3 0	29	0.5 ± 0.4	0.4 ± 0.4	0.5 ± 0.6	0.9 ± 0.8	1.2 ± 0.9	136	129	99.6	98.5
	30	0.3 ± 0.2	0.5 ± 0.3	0.6 ± 0.6	1.0 ± 0.7	1.4 ± 0.6	124	106	96.1	93.9
	31	0.5 ± 0.3	0.3 ± 0.4	0.4 ± 0.4	1.0 ± 1.1	1.3 ± 1.0	110	120	04.1	05.1
Ĩ	32	0.3 ± 0.2	0.5 ± 0.6	0.4 ± 0.3 0.6 ± 0.4	0.8 ± 0.7 1.2 ± 0.7	1.2 ± 0.7 1.7 ± 0.7	119	130	94.1	98.4
	33 34	0.2 ± 0.2 0.2 ± 0.2	0.6 ± 0.6 0.4 ± 0.4	0.6 ± 0.4 0.4 ± 0.4	1.2 ± 0.7 0.5 ± 0.3	1.7 ± 0.7 0.9 ± 0.3	125	123	96.4	94.9
superior inflation (mm) 30 40	34	0.2 ± 0.2 0.3 ± 0.2	0.4 ± 0.4 0.3 ± 0.2	0.4 ± 0.4 0.4 ± 0.4	0.5 ± 0.3 1.0 ± 0.7	0.9 ± 0.3 1.3 ± 0.6	125	123	96.4	94.9
40 20 right left (rm)	36	0.3 ± 0.2 0.3 ± 0.2	0.3 ± 0.2 0.3 ± 0.3	0.4 ± 0.4 0.4 ± 0.3	0.5 ± 0.6	0.9 ± 0.5	110	119	73.9	90.4
Intraoperative dosimetry result showing a cold spot. (a) TRUS image is overlaid with the prostate	30	0.3 ± 0.2 0.2 ± 0.2	0.5 ± 0.3 0.6 ± 0.3	0.4 ± 0.3 0.7 ± 0.6	0.3 ± 0.6 0.8 ± 0.6	0.9 ± 0.3 1.4 ± 0.5	120	124	94.6	96.9
contour and the 100% isodose level (bright line) computed from the registered seed reconstruction	Overall	0.2 ± 0.2 0.4 ± 0.5	0.6 ± 0.3 0.4 ± 0.4	0.7 ± 0.6 0.5 ± 0.5	0.8 ± 0.8 0.9 ± 0.7	1.4 ± 0.3 1.3 ± 0.7	120	124	74.0	90.9

Technical Challenges in Prostate Seed Implantation

- Edema prostate volume increases, dose uncertainty, toxicities
- Needle placement deflection from desired coordinates, difficulties in puncturing prostate capsule, prostate deformation deflection, i.e. challenge in immobilization
- Seed position local movement, long distance migration (lungs, heart); position of delivered seeds can be significantly different from pre/intra-Op planned coordinates resulting in substantial deviation in dosimetric coverage
- Post-Op evaluation challenging to delineate prostate in post-Op CT, several seeds may clamp together

IECIII	iques ioi	Prostate	Immobili	zation
OP Publishing	PHYSICS IN MEDICINE AND BIOLOGY			
hys. Med. Biol. 53 (2008) 1563-1579	doi:10.1088/0031-9155/53/6/004		Hook needle	Regular needle
Methods for prostate stabilization ransperineal LDR brachytherapy Tarun Podder ¹ , Jason Shermar ² , Debor	h Rubens ³ , Edward Messing ⁴ ,			
John Strang ⁵ , Wan-Sing Ng ⁶ and Yan Yu				
¹ Department of Radiation Oncology, Jefferson Medi	al College, Thomas Jefferson University,			
Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buffi ³ Departments of Imaging Science and Surgery, Univ	- Durg	prostate displacement i	results for all the config	gurations (in vitro experiment).
Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff ³ Departments of Imaging Science and Surgery, Univ USA ⁴ Departments of Urology and Surgery, University of ⁵ Departments of Imaging Science and Surgery, Univ	o, Buff rsity of Rochest	prostate displacement i Needle	results for all the config Resultant	urations (<i>in vitro</i> experiment). Reduction
Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buffi ³ Departments of Imaging Science and Surgery, Univ USA ⁴ Departments of Urology and Surgery, University of ³ Departments of Imaging Science and Surgery, Univ USA ⁶ School of Mechanical and Aerospace Engineering, Singapore 639798	o, Buff sity of kochest sity of anyang Needle		C	
Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff, ³ Departments of Imaging Science and Surgery, Univ USA ⁴ Departments of Urology and Surgery, University of ³ Departments of Imaging Science and Surgery, Univ USA ⁸ School of Mechanical and Aerospace Engineering.	o, Buff sity of kochest sity of anyang Needle	Needle	Resultant	Reduction
Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff ³ Departments of Medical Physics, University of ⁴ Departments of Imaging Science and Surgery, Univ USA ⁶ School of Mechanical and Aerospace Engineering, ⁷ Singapore 639798 ⁷ Department of Radiation Oncology, Jefferson Medi Philadelphia, PA 19107, USA Received 2 July 2007, in final form 23 Dec	o, Buff Sisty of al Colle No stabilization	Needle	Resultant displacement (mm)	Reduction
Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff, ³ Departments of Imaging Science and Surgery, Univ USA ⁴ Departments of Urology and Surgery, University of ³ Departments of Imaging Science and Surgery, Univ USA ⁶ School of Mechanical and Aerospace Engineering, Singapore 639798 ⁷ Department of Raidation Oncology, Jefferson Medi Philadelphia, PA 19107, USA	o, Buff Table 7. Overall Table 1. Overall I anyan al Colle No stabilization	Needle configuration	Resultant displacement (mm) 15.4	Reduction in movement
 Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff. ³ Departments of Intaging Science and Surgery, Univ USA ⁴ Departments of Intaging Science and Surgery, Univ USA ⁶ Departments of Intaging Science and Surgery, Univ USA ⁸ School of Mechanical and Aerospace Engineering, Singapore 639798 ⁹ Department of Radiation Oncology, Jefferson Medi Philadelphia, PA 19107, USA Received 2 July 2007, in final form 23 Dec Published 22 February 2008 	o, Buff Table 7. Overall Table 7. Overall Invana al Colle Investigation No stabilization 18G Regular	Needle configuration – Parallel (0°H0°V)	Resultant displacement (mm) 15.4 11.5	Reduction in movement - 25.3%
 Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff. ³ Departments of Intaging Science and Surgery, Univ USA ⁴ Departments of Intaging Science and Surgery, Univ USA ⁶ Departments of Intaging Science and Surgery, Univ USA ⁸ School of Mechanical and Aerospace Engineering, Singapore 639798 ⁹ Department of Radiation Oncology, Jefferson Medi Philadelphia, PA 19107, USA Received 2 July 2007, in final form 23 Dec Published 22 February 2008 	o, Buff Sisty of anyana al Colle amber 18G Regular 18G Regular	Needle configuration – Parallel (0°H0°V) 20°H30°V	Resultant displacement (mm) 15.4 11.5 7.2	Reduction in movement - 25.3% 53.2%
 Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff. ³ Departments of Intaging Science and Surgery, Univ USA ⁴ Departments of Intaging Science and Surgery, Univ USA ⁶ Departments of Intaging Science and Surgery, Univ USA ⁸ School of Mechanical and Aerospace Engineering, Singapore 639798 ⁹ Department of Radiation Oncology, Jefferson Medi Philadelphia, PA 19107, USA Received 2 July 2007, in final form 23 Dec Published 22 February 2008 	o, Buff Table 7. Overall Table 7. Overall I anyan a Colte Mo stabilization 18G Regular 18G Regular 18G Regular	Needle configuration – Parallel (0°H0°V) 20°H30°V 30°H30°V	Resultant displacement (mm) 15.4 11.5 7.2 6.1	Reduction in movement - 25.3% 53.2% 60.4%
 Philadelphia, PA 19107, USA ² Department of Medical Physics, University of Buff. ³ Departments of Intaging Science and Surgery, Univ USA ⁴ Departments of Intaging Science and Surgery, Univ USA ⁶ Departments of Intaging Science and Surgery, Univ USA ⁸ School of Mechanical and Aerospace Engineering, Singapore 639798 ⁹ Department of Radiation Oncology, Jefferson Medi Philadelphia, PA 19107, USA Received 2 July 2007, in final form 23 Dec Published 22 February 2008 	o, Buff Table 7. Overall Table 7. Overall Needle No stabilization 18G Regular 18G Regular 18G Regular 18G Regular 18G Regular	Needle configuration – Parallel (0°H0°V) 20°H30°V 30°H30°V 30°H30°V crossed	Resultant displacement (mm) 15.4 11.5 7.2 6.1 5.6	Reduction in movement - 25.3% 53.2% 60.4% 63.6%

12

Other Challenges

- Brachytherapy is underrated/underappreciated
- Shadowed by proton therapy and IMRT
- Decreasing expertise
- Increasing lack of BT training; needs to shorten and make it popular

Robotic BT devices can mitigate some of the above issues

Robot-assisted Brachytherapy

Main Objectives are to -

- 1) Improve accuracy of needle/catheter placement
- 2) Improve consistency of source placement/delivery
- 3) Improve avoidance of OARs
- 4) Improve dose optimization
- 5) Reduce the clinician's learning curve
- 6) Reduce clinician's fatigue
- 7) Reduce radiation exposure to clinical staff
- 8) Streamline the brachytherapy procedure

AAPM TG-192, MedPhys (2014) 41(10)

Available/developed Robotic Systems for Brachytherapy

- 1) Thomas Jefferson University, USA (2) Podder, Yu
- 2) Johns Hopkins University, USA (4) Fichtinger, Stoianovici, Song
- 3) University of Wisconsin, USA (1) Thomadsen, et al.
- 4) University of British Colombia, Canada (1) Salcudean, Spadinger
- 5) Robarts Research Institute, Canada (1) Fenster, et al.
- 6) University of Western Ontario, Canada (1) Patel, et al.
- 7) Elekta/Nucletron SeedSelectron/FIRST, Netherlands (discontinued) Elekta
- 8) Univ. Medical Center Utrecht, Netherlands (1) Moerland, Lagerburg
- 9) Grenoble University Hospital, France (1) Troccaz, Hungr
- 10) Univ. of California at San Diego/ Univ. of Iowa (1) Watkins, Song
- 11) Univ. of Cluj-Napoca, Romania (1) Galdău, Pîslă
- 12) Tianjin Univ, China (1) Dou, Yang, et al.
- 13) CoBra (MRI guided) European project

Total = 17 robotic systems

					-	of			y I							
Table 1:	Summary o	of the curr	ently avai	lable rob	otic brac	chytherapy	systems.		Total = 17 (2 are not listed here, shown later)							
		TRUS-based Robotic Prostate Brachytherapy Systems									obotic Prosta			Robotic Brad		
Features											apy Systems			ns for Other		
	FIRST	EUCLIDIAN	MIRAB	UW robot	JHU-robot1	UBC	RRI	CHUG	UMCU	JHU- MrBot (2)	JHU-MR (3)	JHU-MR	MIRA-V	PARA - BRACHYROB	DMBT	
Institute/Lab	Elekta- Nucletron	TJU	TJU	UW	JHU	UBC	RRI	CHUG	UMCU	JHU	JHU	лно	UWO	TUCN	UCSD	
Year (approx)	2001-2004	2005-2010	2007-2012	2005-2008	2002-2008	2007-2009	2005-2011	2007-2011	2006- 2010	2003- 2008	2005-2008	2007- 2011	2005-2009	2013-2016	2011-2016	
RIA Class	2	3	3	2	2	2	3	2	2	2	2	2	3	2	3	
Brachy Class	п	ш	ш	п	п	п	п	п	п	ш	п	п	п	п	п	
Application	PSI	PSI	PSI/HDR	PSI/HDR	PSI	PSI	PSI	PSI	PSI/HDR	PSI	PSI	PSI	LSI (hung)	Seed Implantation	HDR (rectum/ breast)	
Imaging modality	U/S (auto & manual)	U/S (auto & manual)	U/S (auto & manual)	U/S (manual)	U/S (manual)	U/S (manual)	U/S (auto & manual)	U/S	MRI	MRI	MRI	MRI	U/S		oreast)	
Degrees-of-freedom (DOF)	2 DOF	5 DOF surgical, 2 DOF U/S, 6 DOF positioning, 3 DOF cart	5 DOF surgical, 2 DOF U/S, 6 DOF positioning, 3 DOF cart	6 DOF	4 DOF surgical	4 DOF surgical	U/S (auto & manual)	5 DOF	5 DOF	4 DOF	3 DOF	6 DOF	5 DOF	5 DOF	3 DOF (including HDR source movement)	
Number of channel/ needle	Single	Single	16 needles	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	Single	8-16 channels	
Needle insertion	Manual	Autonomous	Autonomous	Auto and /or Manual	Manual	Manual	Manual	Autonomou s	Autonom ous tapping	Autonom ous			Manual	Autonomous	N/A	
Needle rotation	No	Yes	Yes	Yes	No	No	Manual	Yes	No	No	No	No	No	No	N/A	
Angled Insertion	No	Yes		Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	N/A	
Source delivery/ positioning	Autonomous	Autonomous	Autonomous	Manual (auto in research)	Manual	Manual	Manual	Manual	Manual	Autonom ous	Manual	Manual	Manual	N/A	Autonomo us	
Needle/source withdraw	Autonomous	Autonomous	Autonomous	Auto and /or Manual	Manual	Manual	Manual	Manual	Manual	Autonom	Manual	Manual	Manual	Autonomous	Autonomo	
Physical template	Yes	No	Yes	No	No	No	No	No	No	No	No	No	No	No	No	
Template/perineum area coverage	Conventional	62mm x 67mm	60mm x 60mm	250mm x 250mm	50mm x 50mm	150mm x 150mm	60mm x 60mm	105mm x 105mm	N/A	40mm x 40mm	N/A	50mm x 50mm	N/A	N/A	N/A	
Depth movement	Conventional	312mm	240mm	250mm	120mm	150mm	70mm	N/A	150mm	40mm	N/A	120mm	N/A		45mm	
TPS	Oncentra Seeds	In-house, FDA- IDE approved	In-house	N/A	FDA approved Interplant	N/A	In-house	N/A	N/A	N/A	N/A	none	N/A	N/A	N/A	
Needle tip positioning accuracy in air	N/A	< 0.2 mm	< 0.2mm	N/A	N/A	<0.3mm	0.2mm	N/A	N/A	0.32mm	N/A	0.94mm	<0.5mm	N/A	N/A	
Needle tip positioning accuracy in phantom	<0.5mm	<0.5mm	<0.5mm	N/A	1.04mm	N/A	0.9mm	1.0mm	N/A	<0.5mm	2.0mm	3.0mm	0.9mm	N/A	N/A	
Accuracy in source/seed deposition	<1mm (tested)	lmm (tested)	<lmm< td=""><td><lmm< td=""><td>N/A</td><td>1.2mm</td><td>1.6mm</td><td>N/A</td><td>N/A</td><td><1mm</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>lmm</td></lmm<></td></lmm<>	<lmm< td=""><td>N/A</td><td>1.2mm</td><td>1.6mm</td><td>N/A</td><td>N/A</td><td><1mm</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>lmm</td></lmm<>	N/A	1.2mm	1.6mm	N/A	N/A	<1mm	N/A	N/A	N/A	N/A	lmm	
Emergency stop	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	
Provision for reverting to conventional mode	Yes	Yes	Yes	Yes			Yes		No					N/A	N/A	
Force-torque sensor	No, but motor stops if too much force needed)	Yes	No	Yes	No	No	No	No	No	No	No	No	No	No	N/A	
FDA, CE approval	Yes, also CE	IDE	No	No	No	No	No	No	No	No	No	No	No	No	No	

Some of the Brachy Robots

ianovici, Roach, et al. MITAT, 2010

Fichtinger et al. MedIA, 2008

Hungr, et al. IEEE-EMBS, 2009

Yu, Podder et al. MICCAI 2006

Salcudean et al. IEEE-ICRA 2010

Dou, et al. MedPhys 2017 (4DOF CT-guided for lung brachy)

Future Directions

- 1) Use of multimodal imaging and mpMRI for cancer detection and diagnosis radiomics, AI/ML, ANN/CNN etc.
- 2) Consider focal therapy reduce toxicity, improve quality of life
- 3) Improve dosimetric computation MC, MBDC, etc.
- 4) Improve delivery of Tx target stabilization, accurate needle placement and seed deposition, real-time dynamic dose verification and adaptation
- 5) Training of new generation physicians & physicists
- 6) Use mechanized/robotic systems reduce clinician's burden, improve Tx consistency
- 7) Respect and follow the science

Thank You! Stay Safe!!

Any Question?