Commissioning and clinical implementation of an MRI brachytherapy suite

Ananth Ravi, PhD, MCCPM Medical Physicist, Sunnybrook Odette Cancer Centre Clinical Operations Lead, Brachytherapy Associate Professor, Department of Radiation Oncology, UofT

I am a consultant to MOLLI Surgical

Outline

- Value of MR imaging in Brachytherapy
- MR brachytherapy workflows and considerations
 - MR imaging + registration
 - Intraoperative MR imaging
- Resource requirements
- Commissioning/QA

MRI in Brachytherapy

MRI-based Brachytherapy

- MRI allows us to see applicators, OAR and tumor
 - Safe dose escalation and OAR avoidance is now possible
 - Dose is patient specific and not applicator specific

HEALTH SCIENCES

Impact of including MR in brachytherapy

<u>Gyne</u>

- Overall Survival
 - Benefit of 10% OS
 retroEMBRACE compared with historical controls

Toxicities

- Reduction in 3 - 6 % per organ

Prostate

• Volume

- CT volumes are 16% larger than MR
- TRUS volumes are 10% smaller than MR

• Dosimetry

- MR limits dose spill at Apex and Base
- Can control dose to urinary sphincter

Potter/Tanderup et al, EMBRACE Review, ctRO 75 (2018) Sturdza et al, retroEMBRACE, Radiother Oncol 120 (2016) 428-433 Smith et al, IJROBP 64 (2007) 1238-1247 Takiar et al, Brachytherapy, 13 (2014) 68-74

MRI in clinical workflow

MR + CT hybrid process with rigid registration

CT

Contour based deformable registration

Structure	DIL			
Metric	ROs	MR2US	Rigid	B-Spline
DSC	0.80 ± 0.10	0.80 ± 0.13	0.65 ± 0.20	0.51 ± 0.30
MDA (mm)	1.24 ± 0.73	1.30 ± 0.53	1.71 ± 0.80	3.10 ± 2.00
Distance between centroids (mm)	6 ± 2	5 ± 2	7 ± 5	18 ± 11
Registration time (sec)	227 ± 27	11±2	7±1	199 ± 38
Volume (cc)	3.52 ± 2.00	3.31 ± 2.00	2.83 ± 1.74	2.30 ± 1.64
Difference between volumes (cc)ª	0.86 ± 0.50	1.10 ± 0.50	1.50 ± 1.00	2.10 ± 1.20

Quantitative measures of image registration accuracy – TG132

Shaaer, A., et al. (2018). *Brachytherapy* 18.1 (2019): 95-102. Brock, Kristy K., et al. TG132. *Medical physics* 44.7 (2017): e43-e1

> Medicine UNIVERSITY OF TORONTO

Sunnybrook Health sciences centre

MRI in clinical workflow

CT-Based Technique and Catheter Displacement

Planned

Delivered

R. Holly et al. / Brachytherapy 10 (2011) 299-305

Patient Transfer System

Q-fix Symphony

• Diacor – Zephyr HDR

MRI in clinical workflow

Medical University of Vienna (Low Field - Open Bore)

- Low Field (0.35T MRI)
- Open bore
- Improved field homogeneity
- Low susceptibility artifact
- Reduced chemical shift artefact

Medicine UNIVERSITY OF TORONTO

Sunnybrook

Princess Margaret Cancer Centre (MR on rails)

- 1.5T MR on rails
 - -MR sim
 - Linac bunker
 - Brachy suite

Ménard, C. et al. Brachytherapy 16.4 (2017): 754-760.

OCC MR image guided brachytherapy suite

Shielding for RF and radiation

- RT safety systems:
 - -Interlocks
 - **Emergency Stops**
 - -Indicators
 - Radiation Monitoring & Source stuck kit
- MR safety:
 - Appropriate Zoning
 - Ferromagnetic detectors at the door
 - -Quench button
 - Evacuation fans

MRI in clinical workflow

Cost-Utility of MR guided brachy vs. CT or 2D

- Public health single payer perspective
- For all stages MRgBT provides systemic savings over CT and 2D
- Driven by cost of recurrence

Perdrizet, Johnna, et al. IJROBP (2020

Medicine UNIVERSITY OF TORONTO

😹 Sunnybrook

2D Brachytherapy at OCC

Medicine UNIVERSITY OF TORONTO

Sunnybrook HEALTH SCIENCES CENTRE

Start of the OCC program

Intraoperative Brachytherapy Experience

20 consecutive intraoperative cases

Sunnybrook

Medicine UNIVERSITY OF TORONTO

Ezezika, Jacqueline, et al. "Going Lean to Improve the Patient Experience in a High-Throughput Brachytherapy Program." Journal of Medical Imaging and Radiation Sciences 49.2 (2018): 130-135.

MR safe brachytherapy equipment

- MR safe anesthetic cart
 - Compatible with Anesthesia supplies
- MR safe patient monitor
 - Remote display capability
- MR Conditional Afterloader
 - Plastic cables
 - -RF shielded afterloader
 - Shielded data cable

Selection of MR Safe Applicators

- Plastic applicators create signal voids
 - No local distortions
 - MR markers/Model based reconstruction may aid reproducibility
- Metal Applicators
 - Distortion and artefacts need to be quantified
 - Vendor must provide MR safety information

MRI in clinical workflow

Commissioning

- Geometric fidelity checks of MR sequences
- Data transfer integrity
- Source path characterization
- Applicator model validation

Applicator Commissioning

- Index position of first Dwell position
- Distance of dwell to outer surface of applicator
- Spot checks of source path for curved applicators
- Imaging artefacts introduced by metallic applicators

Reconstruction aids

AAPM report No. 100

MR sequences for catheter delineation

T2W 3D coarse – (1 mm isotropic)

- Catheters appear as voids
- Negative contrast
- ~3 mins

T1W 3D coarse – (1 mm isotropic)

- Catheters appears as bright
- Positive Contrast
- ~ 3 mins

QA for MR-guided brachy program

Patient specific QA

- Real-time peer review of contours
- Free length verification
- Automated second checks

Programmatic QA
CPQR QA program
Monthly QA of MR markers

Thank you

