Commissioning and clinical implementation of an MRI brachytherapy suite

Ananth Ravi, PhD, MCCPM
Medical Physicist, Sunnybrook Odette Cancer Centre
Clinical Operations Lead, Brachytherapy
Associate Professor, Department of Radiation Oncology, UofT
Disclosure

I am a consultant to MOLLi Surgical
Outline

• Value of MR imaging in Brachytherapy
• MR brachytherapy workflows and considerations
 – MR imaging + registration
 – Intraoperative MR imaging
• Resource requirements
• Commissioning/QA
MRI in Brachytherapy

Value of MR → Treatment workflows → QA
MRI-based Brachytherapy

• MRI allows us to see applicators, OAR and tumor
 – Safe dose escalation and OAR avoidance is now possible
 – Dose is patient specific and not applicator specific
Impact of including MR in brachytherapy

Gyne

• Overall Survival
 – Benefit of 10% OS
 • retroEMBRACE compared with historical controls

• Toxicities
 – Reduction in 3 – 6 % per organ

Prostate

• Volume
 – CT volumes are 16% larger than MR
 – TRUS volumes are 10% smaller than MR

• Dosimetry
 – MR limits dose spill at Apex and Base
 – Can control dose to urinary sphincter

Potter/Tanderup et al, EMBRACE Review, cTRO 75 (2018)
Sturdza et al, retroEMBRACE, Radiother Oncol 120 (2016) 428-433
Smith et al, IJROBP 64 (2007) 1238-1247
Takiar et al, Brachytherapy, 13 (2014) 68-74
MRI in clinical workflow

Value of MR → Treatment Workflows → QA

Scanner away from OR

Registration Algorithms

Scanner in OR

Patient Transfers
MR + CT hybrid process with rigid registration
Contour based deformable registration

Quantitative measures of image registration accuracy – TG132

<table>
<thead>
<tr>
<th>Structure</th>
<th>DIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>ROs</td>
</tr>
<tr>
<td>DSC</td>
<td>0.80 ± 0.10</td>
</tr>
<tr>
<td>MDA (mm)</td>
<td>1.24 ± 0.73</td>
</tr>
<tr>
<td>Distance between centroids (mm)</td>
<td>6 ± 2</td>
</tr>
<tr>
<td>Registration time (sec)</td>
<td>227 ± 27</td>
</tr>
<tr>
<td>Volume (cc)</td>
<td>3.52 ± 2.00</td>
</tr>
<tr>
<td>Difference between volumes (cc)</td>
<td>0.86 ± 0.50</td>
</tr>
</tbody>
</table>
CT-Based Technique and Catheter Displacement

Planned

Delivered
Patient Transfer System

• Q-fix Symphony

• Diacor – Zephyr HDR
MRI in clinical workflow

- Diagnosis
 - Scanner away from OR
 - Registration Algorithms
 - Patient Transfers
 - Scanner in OR
 - Suite Design
- Treatment
- QA
- Resources
Medical University of Vienna (Low Field - Open Bore)

- Low Field (0.35T MRI)
- Open bore
- Improved field homogeneity
- Low susceptibility artifact
- Reduced chemical shift artefact

Princess Margaret Cancer Centre (MR on rails)

- 1.5T MR on rails
 - MR sim
 - Linac bunker
 - Brachy suite

OCC MR image guided brachytherapy suite

Design Considerations:
- Room Dimensions
- Weight of the MR unit
- Shielding
- Penetrations
- MR and RT safety systems
Shielding for RF and radiation

• RT safety systems:
 – Interlocks
 – Emergency Stops
 – Indicators
 – Radiation Monitoring & Source stuck kit

• MR safety:
 – Appropriate Zoning
 – Ferromagnetic detectors at the door
 – Quench button
 – Evacuation fans
MRI in clinical workflow

- Diagnosis
 - Scanner away from OR
 - Registration Algorithms
 - Patient Transfers
 - Scanner in OR
 - Suite Design
- Treatment
- QA
- Resources
Cost-Utility of MR guided brachy vs. CT or 2D

• Public health single payer perspective
• For all stages MRgBT provides systemic savings over CT and 2D
• Driven by cost of recurrence

2D Brachytherapy at OCC

2D Planning
1 hour

- Applicator Insertion (30 mins)
- 2D image acquisition (10 mins)
- 2D Planning (10 mins)
- QA & Treatment (15 mins)

Total Duration for 20 Consecutive 2D cervix cases:
Start of the OCC program

MR Planning
6 hours

- Applicator Insertion (30 mins)
- Recovery (1-2 hours)
- Image acquisition (1 hour)
- Contouring (1 hour)
- 3D Planning (45 mins)
- QA & Treatment (15 mins)

Total Duration
20 consecutive MR guided cases
20 consecutive intraoperative cases

MR safe brachytherapy equipment

- MR safe anesthetic cart
 - Compatible with Anesthesia supplies
- MR safe patient monitor
 - Remote display capability
- MR Conditional Afterloader
 - Plastic cables
 - RF shielded afterloader
 - Shielded data cable

Selection of MR Safe Applicators

- Plastic applicators create signal voids
 - No local distortions
 - MR markers/Model based reconstruction may aid reproducibility

- Metal Applicators
 - Distortion and artefacts need to be quantified
 - Vendor must provide MR safety information
MRI in clinical workflow

- Diagnosis
 - Scanner away from OR
 - Registration Algorithms
 - Patient Transfers
 - Scanner in OR
 - Suite Design
 - Resources
- Treatment
- QA
Commissioning

- Geometric fidelity checks of MR sequences
- Data transfer integrity
- Source path characterization
- Applicator model validation
Applicator Commissioning

- Index position of first Dwell position
- Distance of dwell to outer surface of applicator
- Spot checks of source path for curved applicators
- Imaging artefacts introduced by metallic applicators

Reconstruction aids
MR sequences for catheter delineation

T2W 3D coarse – (1 mm isotropic)
- Catheters appear as voids
- Negative contrast
- ~3 mins

T1W 3D coarse – (1 mm isotropic)
- Catheters appears as bright
- Positive Contrast
- ~ 3 mins
QA for MR-guided brachy program

Patient specific QA
- Real-time peer review of contours
- Free length verification
- Automated second checks

Programmatic QA
- CPQR QA program
- Monthly QA of MR markers
Thank you