

Applications of DECT: Tissue differentiation, Treatment response, and function assessment

Jessica Miller July 15th, 2020

Learning objectives

- Discuss dual-energy CT derived images
- Highlight several application of DECT images within the radiation therapy space
 - Tumor and healthy tissue segmentation
 - Tumor characterization
 - Treatment response assessment using DECT
 - Functional tissue segmentation

DECT in radiation therapy

Mixed – 120 kVp equivalent image

Effective atomic number and electron density images

Material decomposition

Virtual Monoenergetic Images (VMI)

Radiation therapy applications:

Tumor identification, characterization and delineation

Tumor delineation for head and neck cancer

ORIGINAL ARTICLE

(Invest Radiol 2014;49: 735–741)

Low-Energy Virtual Monochromatic Dual-Energy Computed Tomography Images for the Evaluation of Head and Neck Squamous Cell Carcinoma: A Study of Tumor Visibility Compared With Single-Energy Computed Tomography and User Acceptance

Reza Forghani, MD, PhD, *†‡ Hillary Kelly, MD, §// Eugene Yu, MD, ¶ Manon Belair, MD, # Laurent Létourneau-Guillon, MD, # Huy Le, MD, * Francesca Proulx, MD, * Thomas Ong, MD, DMD, * Xianming Tan, PhD, ** Hugh D. Curtin, MD,// and Mark Levental, MD*

Tumor delineation for pancreatic cancer

FBP Admire 2 (d) (a) (b) (e)

Mixed

57 keV

40 keV

9

Quantifying CNR gains in DECT pancreatic images

Lianna Di Maso et al. Journal of Applied Clinical Medical Physics (2018) 19(5): 676–683.

Tumor delineation for lung cancer

Bone lesion delineation

Duc Fehr et al. Proc IEEE Int Symp Biomed Imaging (2016) 168–171.

Spectral Hounsfield unit attenuation curves (SHUACs)

Srinivasan et al. J Comput Assist Tomogr. (2013) 37(5): 666–72.

Material decomposition – iodine map

School of Medicine and Public Health

Roele, E.D., Timmer, V.C.M.L., Vaassen, L.A.A. et al. Curr Radiol Rep (2017) 5: 19.

Incorporating multiple images to characterize tumor

Forghani et al. European Radiology (2019) 29:6172-6181.

Radiation therapy applications:

Treatment response assessment

Treatment response with DECT iodine maps

M. Meyer et al. European Journal of Radiology (2013) 82(6): 923-928. X. Dai et al. European Journal of Radiology (2013) 82: 327-334.

Texture analysis in radiation therapy

Table 3. Studies who have applied texture analysis in the context of radiotherapy

		Radiotherapic aim	District	Imaging modalities	Treatment type	References (first author, year)	
		Radiation targeting in RT planning	Head and neck	PET/CT	IMRT	Yu et al, 2009 ^{72,73}	
			Prestate	СТ	IMRT	Nailon et al, 2008 ²⁹	
	Entropy 7.000	Tumour response to treatment	Lung	PET	SABR	Pyka et al. 2015 ⁸²	
				PET	CRT	Cook et al, 2013	
				СТ	SABR	Huynh et al, 2016 ⁸⁵ ; Mattenen et al, 2014 ⁷⁹ ; Mattonen et al, 2015 ⁹ ; Mattonen et al, 2016 ⁸¹ ;	
				СТ	CRT	Coroller et al, 2016 ⁸⁴	
	6.250		Oesophagus	PET	CRT	Tixier et al, 2011 ⁸⁶ ; Nakajo et al, 2016 ⁸⁷ ; Yip, et al 2016 ³⁷	
				СТ	CRT	Yip et al, 2014 ⁸⁸	
	5.500		Head and neck	PET	CRT	El Naqa et al, 2009 ⁸⁹	
				mp-MRI	CRT	Liu et al, 2016 ⁹⁰ ; Scalco et al, 2016 ⁹¹	
				DCE-MRI	IMRT	Jansen et al, 2016 ⁶³	
			Prostate	T2w-MRI	EBRT	Gnep et al, 2016 ⁹⁴	
	4.750		Rectum	PET	CRT	Bundschuh et al, 2014 ⁹⁵	
				T2w-MRI	CRT	De Cecco et al, 2015 ⁹⁶	
				mp-MRI	CRT	Nie et al, 2016 ⁹⁷	
			Brain	MRI	SRT	Nardone et al, 2016 ⁹⁹	
			Soft-tissue sarcoma	СТ	CRT	Tian et al. 20 15 ⁹⁸	
	4.000		Lung	СТ	SRPT	Mattonen et al, 2014 ⁷⁹ ; Mattonen et al, 2015 ⁸⁰ ;	
isa Scalco and Giovanna		Radiation-induced effects on normal tissue		СТ	Oesophageal RT	Cunliffe et al, 2015 ¹⁰⁰	
			Parotid glands	Ultrasound	Head–neck RT	Yang et al, 2012 ¹⁰¹	
izzo. Br J Radiol (2017)				СТ	IMRT	Scalco et al, 2013 ¹⁰² ; Scalco et al, 2015 ¹⁰⁴ ; Pota et al, 2015 ¹⁰³	

El Rizzo. Br J Radiol (2017) 90: 20160642.

CRT, chemoradiotherapy; DCE-MRI, dynamic contrast-enhanced MRI; EBRT, external beam radiotherapy; IMRT, intensity-modulated radiotherapy; mp-MRI, multiparametric MRI; PET, positron emission tomography; RT, radiotherapy; SABR, stereotactic ablative radiation therapy; SRT, stereotactic radiotherapy; T2w, T2 weighted.

Treatment response with DECT texture features

Chen et al. PLOS ONE (2017) 12(6): e0178961.

Noid et al. Medical Physics (2018) 45: 4238 – 4245.

Radiation therapy applications:

Normal tissue segmentation

Normal tissue delineation

Postma et al. Dual-Energy CT: What the Neuroradiologist Should Know. Current Radiology Reports (2015) 3(5):16.

Supratentorial white matter/basal ganglia

50 keV to 70 keV

Posterior fossa Higher energies

Normal tissue segmentation

Chen et al. 1st Conference on Medical Imaging with Deep Learning (MIDL 2018).

Van der Heyden et al. Scientific Reports (2019) 9 Article # 4126.

Radiation therapy applications:

Functional normal tissue segmentation and toxicity

Motivation for functional imaging in radiation therapy

- Typical radiation therapy treatment plans assess radiation dose to the entire lung volume
 - Mean lung dose, V5, V20, V30, etc.
- More than half of lung cancer patients have concomitant pulmonary disease
- Functional lung volume is a better metric then anatomical lung volume for predicting lung toxicities
- Need for accessible functional lung imaging techniques which can be incorporated in the the radiation therapy workflow

Houda Bahig et al. International Journal of Rad. Onc., Biology, Physics (2017) 99(1) 334-343.

Functional lung imaging: ventilation

Clinical Trail NCT02843568

Image provided by Dr. John Bayouth

Functional lung treatment plans

Image provided by Dr. John Bayouth

Optimized Plan (spares high ventilation

regions)

Clinical Trail NCT02843568 : Improving Pulmonary Function Following Radiation Therapy

Preserving lung function post-RT

Clinical Trail: NCT02843568

3 mo. Prepost-RT RT 6 mo. 12 mo. post-RT post-RT

Percent Expansion from Exhale to Inhale (%)

DECT-derived functional lung

Ventilation Xenon inhalation

Zhang, L.J., Zhou, C.S., Schoepf, U.J. et al. Eur Radiol (2013) 23: 2666.

Perfusion Iodine injection

Lung perfusion using dual-source DECT

Lung perfusion using split-filter DECT

Jessica Miller et al. 2019 Annual Meeting of the American Association of Physicists (Abstract #: WE-AB_221AB-4).

Functional bone marrow

Conventional

Functional

Sarah McGuire et al. Radiotherapy and Oncology (2011) 99(1): 49-54.

DECT-derived functional bone marrow

Taiki Magome et al. Int J Radiation Oncol Biol Phys (2016) 96(3): 679-687.

Radiation-induced changes to active bone marrow

Michael Lawless et al. 2020 Joint AAPM/COMP Virtual Meeting (Abstract #: TU-CD-TRACK 2-13).

Qihui Lyu et al. 2020 Joint AAPM/COMP Virtual Meeting (Abstract #: TH-CTRACK 1-5).

DECT-derived functional liver tissue

Shingo Ohira et al. Radiotherapy and Oncology (2020)v145 56-62.

- Dose calculation accuracy
- Tumor identification, characterization, and delineation
- Treatment response assessment
- Normal tissue segmentation
- Functional normal tissue toxicities

Thank you

UW Faculty

Dr. Michael Lawless Dr. Jessie Huang-Vredevoogd Dr. John Bayouth Dr. Kathryn Mittauer Dr. Adam Bayliss Dr. Michael Bassetti Dr. Kristin Bradley Dr. Alan McMillian Dr. Scott Reeder Dr. Ali Pirasteh Dr. Ke Li Dr. Larry DeWerd

UW PhD candidates

Lianna Di Maso Antonia Wuschner Mattison Flakus Eric Wallat

UCLA Collaborators

Dr. Ke Sheng Qihui Lyu

Siemens Collaborators

Dr. Nilesh Mistry Guillaume Grousset Dr. Jainil Shah

Gammex Collaborators

Dr. Kenneth Ruchala

WMS[™] Collaborators

Dr. Dhanansayan Shanmuganayagam Jennifer Meudt

