Applications of DECT: Tissue differentiation, Treatment response, and function assessment

Jessica Miller
July 15th, 2020
Learning objectives

• Discuss dual-energy CT derived images

• Highlight several application of DECT images within the radiation therapy space
 • Tumor and healthy tissue segmentation
 • Tumor characterization
 • Treatment response assessment using DECT
 • Functional tissue segmentation
DECT in radiation therapy

Mixed – 120 kVp equivalent image
Effective atomic number and electron density images
Material decomposition

True Contrast Image

Iodine Map

Virtual Non-contrast
Virtual Monoenergetic Images (VMI)
Radiation therapy applications:

Tumor identification, characterization and delineation
Tumor delineation for head and neck cancer

Reza Forghani, MD, PhD,*†‡ Hillary Kelly, MD,§∥ Eugene Yu, MD,¶ Manon Belair, MD,# Laurent Létourneau-Guillon, MD,# Huy Le, MD,* Francesca Proulx, MD,* Thomas Ong, MD, DMD,* Xianming Tan, PhD,** Hugh D. Curtin, MD,∥∥ and Mark Leventhal, MD*
Tumor delineation for pancreatic cancer

FBP

Admire 2

Mixed

57 keV

40 keV
Quantifying CNR gains in DECT pancreatic images

Tumor delineation for lung cancer
Bone lesion delineation

- CNR = 2.77
- CNR = 8.53
- CNR = 14.9

M. Lawless et al. 2018 Annual Meeting of the American Association of Physicists (Abstract # SU-F-205-4).

Spectral Hounsfield unit attenuation curves (SHUACs)
SHUACs – identifying malignant tissue

Spectral Hounsfield Unit Attenuation Curve

Material decomposition – iodine map

Iodine concentration: 2.3 mg I/ml

Incorporating multiple images to characterize tumor

Radiation therapy applications:

Treatment response assessment
Treatment response with DECT iodine maps

Texture analysis in radiation therapy

<table>
<thead>
<tr>
<th>Radiotherapeutic aim</th>
<th>District</th>
<th>Imaging modalities</th>
<th>Treatment type</th>
<th>References (first author, year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation targeting in RT planning</td>
<td>Head and neck</td>
<td>PET/CT</td>
<td>IMRT</td>
<td>Yu et al, 2019<sup>22,33</sup></td>
</tr>
<tr>
<td></td>
<td>Dosemetric</td>
<td>CT</td>
<td>IMRT</td>
<td>Naitoh et al, 2018<sup>29</sup></td>
</tr>
<tr>
<td></td>
<td>PET</td>
<td>SABR</td>
<td></td>
<td>Pyka et al, 2015<sup>42</sup></td>
</tr>
<tr>
<td></td>
<td>PET</td>
<td>CRT</td>
<td></td>
<td>Cook et al, 2013<sup>24</sup></td>
</tr>
<tr>
<td>Lung</td>
<td>CT</td>
<td>SABR</td>
<td></td>
<td>Huyse et al, 2016<sup>63</sup>; Mattonen et al, 2014<sup>23</sup>; Mattonen et al, 2015<sup>20</sup>; Mattonen et al, 2016<sup>41</sup></td>
</tr>
<tr>
<td>Oesophagus</td>
<td>CT</td>
<td>CRT</td>
<td></td>
<td>Cordier et al, 2016<sup>26</sup></td>
</tr>
<tr>
<td></td>
<td>PET</td>
<td>CRT</td>
<td></td>
<td>Taxier et al, 2011<sup>86</sup>; Naka et al, 2016<sup>62</sup>; Yip et al, 2016<sup>35</sup></td>
</tr>
<tr>
<td>Head and neck</td>
<td>CT</td>
<td>CRT</td>
<td></td>
<td>Yip et al, 2014<sup>48</sup></td>
</tr>
<tr>
<td>Prostate</td>
<td>T2r-MRI</td>
<td>EBRT</td>
<td></td>
<td>Grep et al, 2016<sup>64</sup></td>
</tr>
<tr>
<td>Rectum</td>
<td>PET</td>
<td>CRT</td>
<td></td>
<td>Bundschuh et al, 2014<sup>49</sup></td>
</tr>
<tr>
<td></td>
<td>T2r-MRI</td>
<td>CRT</td>
<td></td>
<td>De Cecco et al, 2015<sup>66</sup></td>
</tr>
<tr>
<td></td>
<td>mp-MRI</td>
<td>CRT</td>
<td></td>
<td>Nie et al, 2016<sup>37</sup></td>
</tr>
<tr>
<td>Brain</td>
<td>MRI</td>
<td>SRT</td>
<td></td>
<td>Nardone et al, 2016<sup>38</sup></td>
</tr>
<tr>
<td>Soft-tissue sarcoma</td>
<td>CT</td>
<td>CRT</td>
<td></td>
<td>Tian et al, 2015<sup>39</sup></td>
</tr>
<tr>
<td>Radiation-induced effects on normal tissue</td>
<td>Lung</td>
<td>CT</td>
<td>EBRT</td>
<td>Mattonen et al, 2014<sup>47</sup>; Mattonen et al, 2015<sup>46</sup></td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>Oesophageal RT</td>
<td></td>
<td>Cunliffe et al, 2015<sup>40</sup></td>
</tr>
<tr>
<td>Parotid glands</td>
<td>Ultrasound</td>
<td>Head & neck RT</td>
<td></td>
<td>Yang et al, 2012<sup>13</sup></td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>IMRT</td>
<td></td>
<td>Scalco et al, 2011<sup>101</sup>; Scalco et al, 2015<sup>34</sup>; Peta et al, 2015<sup>33</sup></td>
</tr>
</tbody>
</table>

CRT, chemoradiotherapy; DCE-MRI, dynamic contrast-enhanced MRI; EBRT, external beam radiotherapy; IMRT, intensity-modulated radiotherapy; MP-MRI, multiparametric MRI; PET, positron emission tomography; RT, radiotherapy; SABR, stereotactic ablative radiotherapy; SRT, stereotactic radiotherapy; T2r, T₂ weighted.
Treatment response with DECT texture features

Radiation therapy applications:

Normal tissue segmentation
Normal tissue delineation

Supratentorial white matter/basal ganglia
50 keV to 70 keV

Posterior fossa
Higher energies

Normal tissue segmentation

Chen et al. 1st Conference on Medical Imaging with Deep Learning (MIDL 2018).

Radiation therapy applications:

Functional normal tissue segmentation and toxicity
Motivation for functional imaging in radiation therapy

- Typical radiation therapy treatment plans assess radiation dose to the entire lung volume
 - Mean lung dose, V5, V20, V30, etc.

- More than half of lung cancer patients have concomitant pulmonary disease

- Functional lung volume is a better metric than anatomical lung volume for predicting lung toxicities

- Need for accessible functional lung imaging techniques which can be incorporated in the radiation therapy workflow

Functional lung imaging: ventilation

Clinical Trial NCT02843568

Image provided by Dr. John Bayouth
Functional lung treatment plans

Conventional Plan

Optimized Plan (spares high ventilation regions)

Clinical Trail NCT02843568 : Improving Pulmonary Function Following Radiation Therapy

Image provided by Dr. John Bayouth
Preserving lung function post-RT

Clinical Trial: NCT02843568

Image provided by Dr. John Bayouth
DECT-derived functional lung

Ventilation
- Xenon inhalation

Perfusion
- Iodine injection

Lung perfusion using dual-source DECT

Lung perfusion using split-filter DECT

$r = 0.925$

$P < 0.00001$
Functional bone marrow

Case 1

Case 2

Conventional

Functional

DECT-derived functional bone marrow

8 years old 24 years old 48 years old 54 years old 64 years old 79 years old

8 years old RMF: 97%
54 years old RMF: 47%

Radiation-induced changes to active bone marrow

Pre-treatment | 1 week post-treatment | 4 weeks post-treatment

FLT PET

Virtual non-calcium (DECT) HU-map

Qihui Lyu et al. 2020 Joint AAPM/COMP Virtual Meeting (Abstract #: TH-CTrack 1-5).
DECT-derived functional liver tissue

Conclusions

• Dose calculation accuracy

• Tumor identification, characterization, and delineation

• Treatment response assessment

• Normal tissue segmentation

• Functional normal tissue toxicities
Thank you

UW Faculty
- Dr. Michael Lawless
- Dr. Jessie Huang-Vredevoogd
- Dr. John Bayouth
- Dr. Kathryn Mittauer
- Dr. Adam Bayliss
- Dr. Michael Bassetti
- Dr. Kristin Bradley
- Dr. Alan McMillian
- Dr. Scott Reeder
- Dr. Ali Pirasteh
- Dr. Ke Li
- Dr. Larry DeWerd

UW PhD candidates
- Lianna Di Maso
- Antonia Wuschner
- Mattison Flakus
- Eric Wallat

UCLA Collaborators
- Dr. Ke Sheng
- Qihui Lyu

WMS™ Collaborators
- Dr. Dhanansayan Shanmuganayagam
- Jennifer Meudt

Siemens Collaborators
- Dr. Nilesh Mistry
- Guillaume Grousset
- Dr. Jainil Shah

Gammex Collaborators
- Dr. Kenneth Ruchala