

# Practice and prospects of PET/CT guided interventions

Assen S. Kirov, Ph.D.

Associate Attending Physicist

Department of Medical Physics

Memorial Sloan-Kettering Cancer Center, New York, NY

# Outline: PET/CT guided interventions

## Real-time, intra-procedural PET/CT guided

- 1. General procedure flow
- 2. Advantages and limitations
- 3. Radiation safety
- 4. Developments and research opportunities



# Interventional radiology procedures

## Interventional Radiology Edt. R. Uberoi, 2009

| 5  | Arterial access for angiography and intervention  | 91  |
|----|---------------------------------------------------|-----|
|    | Arterial thrombolysis and mechanical thrombectomy | 109 |
| 7  | Angioplasty and stenting                          | 123 |
| 8  | Methods of arterial closure                       | 163 |
| 9  | Stentgrafting                                     | 171 |
| 10 | Interventional radiology in transplantation       | 187 |
| 11 | Interventional uro-radiology                      | 221 |
| 12 | Haemodialysis fistula                             | 253 |
| 13 | Hepatobiliary intervention                        | 269 |
| 14 | Gastro-intestinal intervention                    | 283 |
| 15 | Venous intervention                               | 301 |
| 16 | Interventional radiology in                       |     |
|    | management of gynecological disease               | 327 |
| 17 | Embolization techniques                           | 341 |
| 18 | Tumour ablation                                   | 361 |
| 19 | Biopsy and drainage                               | 387 |
| 20 | Salivary and lacrimal ducts intervention          | 407 |
| 21 | Foreign body retrieval/repositioning: arterial,   |     |
|    | venous, soft tissue                               | 413 |
| 22 | Musculoskeletal intervention                      | 423 |
| 23 | Interventions in the chest                        | 449 |

## PET/CT guided

- Tumor Biopsies
- Tumor Ablations





# Intra-procedural PET/CT guidance



PET/CT in the Interventional Radiology Suite Center for Image Guided Interventions, MSKCC



Lesion not seen in CT image





## Intra-procedural PET/CT guidance



PET/CT in the Interventional Radiology Suite Center for Image Guided Interventions, MSKCC



Fused PET/CT with the needle in place



# Imaging flow of a PET/CT guided biopsy

PET/CT scan before needle insertion





<sup>18</sup>F-FDG 148 to 222 MBq (GE D690)



#### Initial PET/CT scan:

- 1 or 2 bed positions PET scan
- scan time: 2-5 min
- 148-222 MBq (~4 to 6 mCi) injection
- injection to scan times: 30 min to 4  $\ensuremath{\text{h}}$

Fanchon et al, Med. Phys, 2017

















## On-line PET/CT guidance vs Previous PET/CT

- Issues with using a previous PET/CT:
  - Misregistration (different body & organ position)
  - Tumor evolution from the time of the PET
  - Can't use in-OR post-ablation PET for ablation verification
- Intra-procedural PET/CT
  - Registered PET and CT at time of procedure
  - Account for tumor displacement by the needle
  - Reduce breathing artifacts (breath hold PET)
  - Allows ablation verification by second FDG injection



## Radiation safety: 18F-FDG guided

Personnel: Ryan et al, CIR 2013: from 12 cases, detector: OSL under Pb apron,

Median Effective Dose from 448 MBq

0.02 mSv - operator

0.01 mSv - nurse anesthetist

0.02 mSv - radiology technologist

0.32 mSv - extremity dose equivalent for operator

Gazzato et al 2016 (386 MBq split dose): operator's right hand max ~ 0.15 mSv

Patient ED: From 6 mCi inj.: 222 MBq x 0.019 mSv/MBq = 4.2 mSv

vs. 2.4 mSv/a nat. bkg

Current injections:

148 to 222 MBq

CT guidance: 24.0 mSv (Leng et al, 2011)

PET/CT guidance(222 MBq): 28.2 mSv



## Radiation safety: 18F-FDG guided ablations

Current injections for ablations: ~ 270 to 444 MBq

- Personnel ED: only from pre-ablation injection if no ablation after second inj.
- Patient ED:
  - Estimate for 444 MBq (12 mCi) total injected (split dose):

444 MBq x 0.019 mSv/MBq  $\sim$  8.4 mSv

CT guidance: 24.0 mSv (Leng et al, 2011)

PET/CT guided (444 MBq): 32.4 mSv

Estimate for 270 MBq (189-357 MBq range) in 117 procedures, Hu et al, 2020:

Added dose for same radiologist:  $7.8 \pm 2.8 \text{ mSv}$  corrected for confounding factors:  $6.2 \pm 2.9 \text{ mSv}$ 

mean patient dose from PET/CT guidance :  $41.9 \pm 21.5 \,\text{mSv}$ 

Hu et al, J Vasc Interv Radiol 2020; 31:1052-1059



## Benefits of PET/CT guidance

## **Biopsies:**

- · Visibility of PET tracer avid lesions not seen otherwise
- Allows to target the most metabolically active area
- · Resolve previously inconclusive biopsies
- Detect cancer recurrence post surgery, ablation or radiation therapy
- Not limited to FDG: <sup>18</sup>F-FDOPA (NETs), <sup>68</sup>Ga-DOTATOC

#### Ablations:

- · Prolonged visualization of the lesions
- Verification of ablation and prediction of local recurrence

Solomon & Cornelis, JNM 2016 Gazzato et al, Min. Inv Ther & Allied tech, 2018 Kaye et al, Eur. Rad, 2019





# Limitations for <sup>18</sup>F-FDG PET/CT guided Int.

#### Limitations:

- Availability of an interventional PET/CT
- · Very small lesions not seen in PET due to PVE
- · Slightly longer procedure times
- · Increased patient doses
- Tumors not avid with <sup>18</sup>F-FDG PET

#### Not a limitation

Benign inflammatory lesions – PET guides for accurate biopsy

Solomon & Cornelis, JNM 2016 Gazzato et al, Min. Inv Ther & Allied tech, 2018 Hu et al, J Vasc Interv Radiol 2020; 31:1052–1059





# <sup>13</sup>N-ammonia perfusion imaging of ablation margin







- ~ 374 MBq <sup>18</sup>F-FDG 45-60 min before first PET/CT
- ablation
- ~ 338 MBq <sup>13</sup>N-ammonia 5-15 min post ablation
- Width of photopenic anulus-> measure of ablation margin

Shyn et al, Radiology ,288 138-145 2018





# Benefit of PET/CT g. bx for Radiogenomics

=> Correlation of uptake with genomic profile of same lesion

KRAS+: SUV<sub>max</sub> = 17.5



other lesions  $SUV_{max}$  < 12.2

Colorectal adenocarcinoma liver metastases 60 lesions of which 31 with "on the spot" gen. profile

Predicting CRC  $\it KRAS+$  missense mutations using the PVE and uptake time corrected tumor-to-blood ratio,  $\it SUR_{max}$ 

Student's T-test p < 0.001

SUR<sub>MAX</sub> AUC=0.76

Popovich, Talarico, van den Hoff ,...Kirov, submitted Kirov et al, SNMMI 2019



## Intra-procedural PET/CT guidance

### **Biopsies**

• MGH, Boston – Tatli, Shyn et al, 2011: breath hold (BH)

Curitiba, Brasil – Cerci, Bogoni et al , 2013: 126 pancreatic ca. cases

• New York – Ryan, Solomon et al , lung, liver, bone, soft tissue

Bologna, Italy – Nanni, Tabacchi, Zanoni et al, bone, soft tissue, lymphoma

• Chandigarh, India – Kumar et al robotic arm, 18F, 68Ga labeled tr.

• Xiamen, China – Nana et al, 2018, FDG avid prostate lesions

## **Ablations**

• BWH,Boston – Shyn et al 2017-18: BH image reg.; <sup>13</sup>N perfusion: abl. margin

New York – Ryan, Sofocleous et al: split dose technique

Strasbourg, – Gazzato, Gangi et al: <sup>18</sup>F-FDOPA liver ablations of NETs

• JH,Baltimore – Pasciak et al: 90Y PET/CT for post-RE percutaneous REA

## Summary: Intra-proc. PET/CT guidance

- · A well equipped interventional suite is needed
- PET/CT guided biopsies
  - Promise to improve diagnostic success rate and reduce complications
  - Quantifying radioactivity in biopsy specimens:
    - allows high res. in situ validation of new radiopharmaceuticals
    - promising for evaluation of biopsy adequacy
- PET/CT guided ablations
  - Split dose technique: pre- ablation and post- ablation tracer injections
  - Allow targeting, treatment assessment and recurrence prediction
- The doses added to personnel and patients are low



## **Published reviews**

- Shyn PB. Interventional positron emission tomography/computed tomography: state-of-the-art. Tech Vasc Interv Radiol. 2013;16(3):182-90.
- Solomon SB, Cornelis F. Interventional Molecular Imaging. J Nucl Med. 2016;57(4):493-6.
- Fei B, Schuster DM. PET Molecular Imaging-Directed Biopsy: A Review. AJR Am J Roentgenol. 2017;209(2):255-69.
- Cazzato RL, Garnon J, Shaygi B, Koch G, Tsoumakidou G, Caudrelier J, et al. PET/CT-guided interventions: Indications, advantages, disadvantages and the state of the art. 2018;27(1):27-32.
- Book: "Oncological PET/CT with Histological Confirmation" J. Cerci, S.Fanti, D. Delbeqe editors, Springer, 2016





